AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Research on Intelligence Evaluation Method for Crowd Collaboration System

Jinwei Miao1Xiao Sun1Jun Qian1Ziyang Wang1,2Yueting Chai1( )
National Engineering Laboratory for E-commerce Technologies, Department of Automation, Tsinghua University, Beijing 100084, China
Department of Mechanical and Electrical Engineering, Xilingol Vocational College, Xilinhot 026000, China
Show Author Information

Abstract

Crowd collaboration system, originating from cooperation among animals in nature, is composed of intelligent subjects, characterized by complex dynamic interactions, and has many applications in daily life. In the fields of psychology and computing, scientists have tried to quantify individual intelligence with performance on tasks. In this paper, we explore the main factors affecting group performance for small production factories from the perspective of intelligence. Based on the individual daily efficiency and the average process efficiency, we evaluate individual intelligence level and interaction intensity by integrating group size and efficiency difference, and thus propose crowd intelligence evaluation method. The rationality of the method is analyzed from overall group performance and change in the average individual performance. In the future, the intelligence evaluation method can be applied to more general production scenarios, and the impact of external uncertainty on the intelligence can be studied with simulation to achieve real-time and quantitative optimization of intelligence level of the crowd collaboration system.

References

[1]

W. Xie, Z. Wang, F. Wang, and L. Zhang, A review on cooperation from the point of view of evolutionary psychology, Adv. Psychol. Sci., vol. 21, no. 11, pp. 2057–2063, 2013.

[2]
H. Duan. Ant Colony Algorithms: Theory and Application, (in Chinese). Beijing, China: Science Press, 2005.
[3]
J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc. ICNN'95-Int. Conf. Neural Networks, Perth, Australia, 1995, pp. 1942–1948.
[4]
A. Colorni, M. Dorigo, and V. Maniezzo, Distributed optimization by ant colonies, in Proc. ECAL91-European Conference on Artificial Life, Paris, France, 1991, pp. 134–142.
[5]
E. Sober and D. S. Wilson, Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge, MA, USA: Harvard University Press, 1998.
[6]

J. Henrich and M. Muthukrishna, The origins and psychology of human cooperation, Annu. Rev. Psychol., vol. 72, pp. 207–240, 2021.

[7]

A. P. Melis, The evolutionary roots of human collaboration: Coordination and sharing of resources, Ann. New York Acad. Sci., vol. 1299, no. 1, pp. 68–76, 2013.

[8]

S. Duguid and A. P. Melis, How animals collaborate: Underlying proximate mechanisms, Wiley Interdiscip. Rev., vol. 11, no. 5, p. e1529, 2020.

[9]

C. Wagner, Wiki: A technology for conversational knowledge management and group collaboration, Commun. Assoc. Inf. Syst., vol. 13, pp. 265–289, 2004.

[10]

A. Desai, J. Warner, N. Kuderer, M. Thompson, C. Painter, G. Lyman, and G. Lopes, Crowdsourcing a crisis response for COVID-19 in oncology, Nat. Cancer, vol. 1, pp. 473–476, 2020.

[11]

P. Lorenz-Spreen, S. Lewandowsky, C. R. Sunstein, and R. Hertwig, How behavioural sciences can promote truth, autonomy and democratic discourse online, Nat. Hum. Behav., vol. 4, no. 11, pp. 1102–1109, 2020.

[12]

K. S. McGrew and B. J. Wendling, Cattell–horn–carroll cognitive-achievement relations: What we have learned from the past 20 years of research, Psychology in the Schools, vol. 47, no. 7, pp. 651–675, 2010.

[13]
I. J. Deary, Looking down on human intelligence: From psychometrics to the brain, Mank. Q., doi: 10.46469/mq.2001.42.1.7.
[14]

S. Legg and M. Hutter, Universal intelligence: A definition of machine intelligence, Minds Mach., vol. 17, no. 4, pp. 391–444, 2007.

[15]

J. Hernández-Orallo and D. L. Dowe, Measuring universal intelligence: Towards an anytime intelligence test, Artif. Intell., vol. 174, no. 18, pp. 1508–1539, 2010.

[16]

K. Kovacs and A. R. A. Conway, A unified cognitive/differential approach to human intelligence: Implications for IQ testing, J. Appl. Res. Mem. Cogn., vol. 8, no. 3, pp. 255–272, 2019.

[17]
J. Hernández-Orallo, The Measure of All Minds: Evaluating Natural and Artificial Intelligence. Cambridge, UK: Cambridge University Press, 2017.
[18]

A. W. Woolley, C. F. Chabris, A. Pentland, N. Hashmi, and T. W. Malone, Evidence for a collective intelligence factor in the performance of human groups, Science, vol. 330, no. 6004, pp. 686–688, 2010.

[19]

A. Bruhin, K. Janizzi, and C. Thöni, Uncovering the heterogeneity behind cross-cultural variation in antisocial punishment, J. Econ. Behav. Organ., vol. 180, pp. 291–308, 2020.

[20]

M. S. Granovetter, The strength of weak ties, Am. J. Sociol., vol. 78, no. 6, pp. 1360–1380, 1973.

[21]

K. Donahue, O. P. Hauser, M. A. Nowak, and C. Hilbe, Evolving cooperation in multichannel games, Nat. Commun., vol. 11, p. 3885, 2020.

[22]

S. Schoenmakers, C. Hilbe, B. Blasius, and A. Traulsen, Sanctions as honest signals–The evolution of pool punishment by public sanctioning institutions, J. Theor. Biol., vol. 356, pp. 36–46, 2014.

[23]

E. Fehr and S. Gächter, Cooperation and punishment in public goods experiments, Am. Econ. Rev., vol. 90, no. 4, pp. 980–994, 2000.

[24]

A. Li, L. Zhou, Q. Su, S. P. Cornelius, Y. Y. Liu, L. Wang, and S. A. Levin, Evolution of cooperation on temporal networks, Nat. Commun., vol. 11, p. 2259, 2020.

[25]

M. A. Nowak, Five rules for the evolution of cooperation, Science, vol. 314, no. 5805, pp. 1560–1563, 2006.

International Journal of Crowd Science
Pages 120-130
Cite this article:
Miao J, Sun X, Qian J, et al. Research on Intelligence Evaluation Method for Crowd Collaboration System. International Journal of Crowd Science, 2023, 7(3): 120-130. https://doi.org/10.26599/IJCS.2023.9100008

452

Views

27

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 11 February 2023
Revised: 04 April 2023
Accepted: 19 April 2023
Published: 30 September 2023
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return