Because of its superior multipath channel performance and spectrum efficiency, orthogonal frequency-division multiplexing (OFDM) is one of the most suitable candidates for the 6G physical layer in contemporary applications like smart cities and crowded environments in a social Internet of Things (S-IoT) ecosystem. The terahertz (THz) band, 1Tbit/s data rate, low latency, spectrum efficacy, and mobility of 1000 km/h are just a few of the requirements that 6G must meet. Using single-tap equalization, OFDM may reduce the multipath channel impact optimally. However, when the channel has doubly dispersive fading, inter-carrier interference starts to create errors. The worst doubly dispersive fading channel will be produced when THz and high-speed mobility are combined with OFDM as the physical layer for 6G. OFDM requires a complicated equalizer when using channels with doubly dispersive fading. On the basis of band factorization, time domain least squares QR (LSQR) iterative computing, and banded minimum mean squared error (BMMSE), a number of low-complexity equalizers for OFDM have been proposed. Conjugate gradient least squares (CGLS), a revolutionary iterative computation algorithm, is proposed in this study; the proposed equalization technique obtains the trade-off between computations and performance. Simulation results show that the proposed equalizer outperforms the existing BMMSE and LSQR algorithms over doubly dispersive fading channels.
M. H. Alsharif, M. S. Hossain, A. Jahid, M. A. Khan, B. J. Choi, and S. M. Mostafa, Milestones of wireless communication networks and technology prospect of next generation (6G), Comput. Mater. Continua, vol. 71, no. 3, pp. 4803–4818, 2022.
H. Attar, H. Issa, J. Ababneh, M. Abbasi, A. A. A. Solyman, M. Khosravi, and R. S. Agieb, 5G system overview for ongoing smart applications: Structure, requirements, and specifications, Comput. Intell. Neurosci., vol. 2022, p. 2476841, 2022.
A. A. A. Solyman and K. Yahya, Key performance requirement of future next wireless networks (6G), Bull. Electr. Eng. Inform., vol. 10, no. 6, pp. 3249–3255, 2021.
X. Sun, J. Qian, Z. Wang, J. Miao, and Y. Chai, Future of networked information society: A deeply interconnected “primitive society”, International Journal of Crowd Science, vol. 6, no. 4, pp. 178–183, 2022.
X. Xue, G. Li, D. Zhou, Y. Zhang, L. Zhang, Y. Zhao, Z. Feng, L. Cui, Z. Zhou, X. Sun, et al., Research roadmap of service ecosystems: A crowd intelligence perspective, International Journal of Crowd Science, vol. 6, no. 4, pp. 195–222, 2022.
M. H. Alsharif, M. A. M. Albreem, A. A. A. Solyman, and S. Kim, Toward 6G communication networks: Terahertz frequency challenges and open research issues, Comput. Mater. Continua, vol. 66, no. 3, pp. 2831–2842, 2021.
P. Jain, A. Gupta, N. Kumar, and M. Guizani, Dynamic and efficient spectrum utilization for 6G with THz, mmWave, and RF band, IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3264–3273, 2023.
S. A. H. Mohsan, M. A. Khan, M. H. Alsharif, P. Uthansakul, and A. A. A. Solyman, Intelligent reflecting surfaces assisted UAV communications for massive networks: Current trends, challenges, and research directions, Sensors, vol. 22, no. 14, p. 5278, 2022.
H. H. Attar, A. A. A. Solyman, A. E. F. Mohamed, M. R. Khosravi, V. G. Menon, A. K. Bashir, and P. Tavallali, Efficient equalisers for OFDM and DFrFT-OCDM multicarrier systems in mobile E-health video broadcasting with machine learning perspectives, Phys. Commun., vol. 42, p. 101173, 2020.
Y. S. Choi, P. J. Voltz, and F. A. Cassara, On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels, IEEE Trans. Commun., vol. 49, no. 8, pp. 1375–1387, 2001.
X. Cai and G. B. Giannakis, Bounding performance and suppressing intercarrier interference in wireless mobile OFDM, IEEE Trans. Commun., vol. 51, no. 12, pp. 2047–2056, 2003.
L. Rugini, P. Banelli, and G. Leus, Low-complexity banded equalizers for OFDM systems in Doppler spread channels, EURASIP J. Adv. Signal Process., vol. 2006, no. 1, p. 067404, 2006.
T. Hrycak, S. Das, G. Matz, and H. G. Feichtinger, Low complexity equalization for doubly selective channels modeled by a basis expansion, IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5706–5719, 2010.
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., vol. 8, no. 1, pp. 43–71, 1982.
P. Schniter, Low-complexity equalization of OFDM in doubly selective channels, IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1002–1011, 2004.
A. Gupta, S. K. Gupta, M. Rashid, A. Khan, and M. Manjul, Unmanned aerial vehicles integrated HetNet for smart dense urban area, Trans. Emerg. Telecommun. Technol., vol. 33, no. 10, p. e4123, 2022.
C. Chen, J. Zhang, X. Chu, and J. Zhang, On the deployment of small cells in 3D HetNets with multi-antenna base stations, IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9761–9774, 2022.
T. R. Tejasvi and D. H. Manjaiah, Energy and spectral efficient resource allocation in 5G HetNet using optimized deep bi-BRLSTM model, Trans. Emerg. Telecommun. Technol., vol. 33, no. 7, p. e4471, 2022.
A. A. A. Solyman, H. Attar, M. R. Khosravi, V. G. Menon, A. Jolfaei, V. Balasubramanian, B. Selvaraj, and P. Tavallali, A low-complexity equalizer for video broadcasting in cyber-physical social systems through handheld mobile devices, IEEE Access, vol. 8, pp. 67591–67602, 2020.
L. Ma, H. Jia, S. Liu, and I. U. Khan, Low-complexity Doppler compensation algorithm for underwater acoustic OFDM systems with nonuniform Doppler shifts, IEEE Commun. Lett., vol. 24, no. 9, pp. 2051–2054, 2020.
T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas Propag. Mag., vol. 45, no. 3, pp. 51–82, 2003.
A. F. Molisch, Ultrawideband propagation channels-theory, measurement, and modeling, IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1528–1545, 2005.
Y. Ding, T. N. Davidson, Z. Q. Luo, and K. M. Wong, Minimum BER block precoders for zero-forcing equalization, IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2410–2423, 2003.
Y. Wu and W. Y. Zou, Orthogonal frequency division multiplexing: A multi-carrier modulation scheme, IEEE Trans. Consumer Electron., vol. 41, no. 3, pp. 392–399, 1995.
G. Taubock, M. Hampejs, P. Svac, G. Matz, F. Hlawatsch, and K. Grochenig, Low-complexity ICI/ISI equalization in doubly dispersive multicarrier systems using a decision-feedback LSQR algorithm, IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2432–2436, 2011.
Y. H. Zhou, F. Tong, and G. Q. Zhang, Distributed compressed sensing estimation of underwater acoustic OFDM channel, Appl. Acoust., vol. 117, pp. 160–166, 2017.
F. Ding, X. Liu, and J. Chu, Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle, IET Contr. Theory Appl., vol. 7, no. 2, pp. 176–184, 2013.
M. Zhang, A. Zhang, and Q. Yang, Robust adaptive beamforming based on conjugate gradient algorithms, IEEE Trans. Signal Process., vol. 64, no. 22, pp. 6046–6057, 2016.
C. Jiang, H. Li, and M. Rangaswamy, On the conjugate gradient matched filter, IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2660–2666, 2012.
L. Wang and R. C. D. Lamare, Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming, IET Signal Process., vol. 4, no. 6, pp. 686–697, 2010.
Å. Björck, T. Elfving, and Z. Strakos, Stability of conjugate gradient and Lanczos methods for linear least squares problems, SIAM J. Matrix Anal. Appl., vol. 19, no. 3, pp. 720–736, 1998.
M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., vol. 49, no. 6, p. 409, 1952.