Abstract
This study investigates the problematic characteristics of contemporary methods for remote and portable patient monitoring. The consideration is based on recent breakthroughs in information technology and progressive strategies for processing and storing biomedical data. The proposed system represents the Medicine 4.0 concept’s next technological leap. Existing methods for remote and portable monitoring of a patient’s status have several vital disadvantages in system flexibility and the convenience of processing and evaluating biomedical data, according to an analysis of these systems. The authors have created a new concept for a Remote Patient Monitoring System (RPMS) that allows for undetectable wear during the patient’s daily activities. Small modules comprising a microcontroller and a collection of medical sensors transfer data in real-time via wireless Internet of Things (IoT) technologies to a cloud service for the attending physician’s processing and visualization convenience. Based on the proposed concept, the authors created a structural diagram of the experimental RPMS and its built prototype. Amazon Web Services (AWS) is used for the real-time processing of biomedical patient data and its subsequent analysis using a graph-based information visualization system. The performed experimental procedure confirmed that the developed experimental RPMS has minimal latency in transmitting data to AWS; it can alert both the patient and the physician about the need for emergency intervention or treatment adjustments, even if critical indicators are detected. Additionally, the proposed system can incorporate components of expert systems and Artificial Intelligence (AI) systems. The authors advocate using the accomplished system for functional diagnostics specialists, paramedics, and cardiologists in medical facilities and the military medical system for rapid diagnosis and direct monitoring of troops’ health state on the battlefield.