AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Computational Experiments: Virtual Production and Governance Tool for Metaverse

Chao Peng1Xiangning Yu1Wanpeng Ma2Hayata Kaneko3Lin Meng3Yingyue Zhao4Xiao Xue1( )
College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
Army Aviation Research Institute, Beijing 101121, China
College of Science and Engineering, Ritsumeikan University, Kusatsu 525-0058, Japan
School of Civil Engineering, Central South University, Changsha 410083, China
Show Author Information

Abstract

The metaverse, as an extension of the physical world, can be described as a highly immersive digital realm constructed with technologies such as mixed reality and digital modeling. It is rooted in decentralized principles and features novel economic forms, individual identities, and institutional systems. In this architecture, the entire social landscape is redefined under the logic of service, gradually becoming a service ecosystem operated and cooperated by numerous intelligent entities. To achieve sustainable and healthy development of the metaverse ecology, this paper first analyzes the operating logic of the metaverse from the perspective of the fusion of the cyber-physical-social tripartite world and the three typical complexity characteristics faced by it: evolutionary complexity, cognitive complexity, and regulatory complexity. Next, the paper focuses on introducing the idea and technical system of computational experiments as an analysis and governance tool for the metaverse service ecosystem. Then, it explores the integration of computational experiments and metaverse technology, including how computational experiments can be applied to the metaverse and how the metaverse can support computational experiments. Finally, the paper introduces the metaverse applications of computational experiments, covering fields such as industrial design, health care, social governance, and military reform.

References

[1]
Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, Everything as a service (XaaS) on the cloud: Origins, current and future trends, in Proc. 2015 IEEE 8th Int. Conf. Cloud Computing, New York, NY, USA, 2015, pp. 621–628.
[2]

H. Wang, H. Ning, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and M. Daneshmand, A survey on the metaverse: The state-of-the-art, technologies, applications, and challenges, IEEE Internet Things J., vol. 10, no. 16, pp. 14671–14688, 2023.

[3]
H. Huang, Q. Zhang, T. Li, Q. Yang, Z. Yin, J. Wu, Z. Xiong, J. Zhu, J. Wu, and Z. Zheng, Economic systems in metaverse: Basics, state of the art, and challenges, arXiv preprint arXiv: 2212.05803, 2022.
[4]

L. Ante, C. Fischer, and E. Strehle, A bibliometric review of research on digital identity: Research streams, influential works and future research paths, J. Manuf. Syst., vol. 62, pp. 523–538, 2022.

[5]
S. Ghirmai, D. Mebrahtom, M. Aloqaily, M. Guizani, and M. Debbah, Self-sovereign identity for trust and interoperability in the metaverse, arXiv preprint arXiv: 2303.00422, 2023.
[6]

N. Schneider, P. D. Filippi, S. Frey, J. Z. Tan, and A. X. Zhang, Modular politics: Toward a governance layer for online communities, Proc. ACM Hum. Comput. Interact., vol. 5, no. CSCW1, p. 16, 2021.

[7]
C. B. Fernandez and P. Hui, Life, the metaverse and everything: An overview of privacy, ethics, and governance in metaverse, in Proc. 2022 IEEE 42nd Int. Conf. Distributed Computing Systems Workshops (ICDCSW), Bologna, Italy, 2022, pp. 272–277.
[8]

X. Xue, X. N. Yu, D. Y. Zhou, C. Peng, X. Wang, Z. B. Zhou, and F. Y. Wang, Computational experiments: Past, present and perspective, Acta Automatica Sinica, vol. 49, no. 2, pp. 246–271, 2023.

[9]

F. Y. Wang, Computational experiments for behavior analysis and decision evaluation of complex systems, J. System Simulation, vol. 16, no. 5, pp. 893–897, 2004.

[10]

X. Xue, S. Wang, L. Zhang, Z. Feng, and Y. Guo, Social learning evolution (SLE): Computational experiment-based modeling framework of social manufacturing, IEEE Trans. Ind. Inform., vol. 15, no. 6, pp. 3343–3355, 2019.

[11]

L. Li, X. Wang, K. Wang, Y. Lin, J. Xin, L. Chen, L. Xu, B. Tian, Y. Ai, J. Wang, et al., Parallel testing of vehicle intelligence via virtual-real interaction, Sci. Robot., vol. 4, no. 28, p. eaaw4106, 2019.

[12]

X. F. Hu, Z. Q. Li, J. Y. Yang, G. Y. Si, and P. Luo, Some key issues of war gaming & simulation, J. System Simulation, vol. 22, no. 3, pp. 549–553, 2010.

[13]

L. Tesfatsion, Agent-based computational economics: Modeling economies as complex adaptive systems, Information Sciences, vol. 149, no. 4, pp. 262–268, 2003.

[14]

M. F. Acevedo, J. B. Callicott, M. Monticino, D. Lyons, J. Palomino, J. Rosales, L. Delgado, M. Ablan, J. Davila, G. Tonella, et al., Models of natural and human dynamics in forest landscapes: Cross-site and cross-cultural synthesis, Geoforum, vol. 39, no. 2, pp. 846–866, 2008.

[15]

K. M. Carley, D. B. Fridsma, E. Casman, A. Yahja, N. Altman, L. C. Chen, B. Kaminsky, and D. Nave, BioWar: Scalable agent-based model of bioattacks, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., vol. 36, no. 2, pp. 252–265, 2006.

[16]

C. Cioffi-Revilla and M. Rouleau, MASON RebeLand: An agent-based model of politics, environment, and insurgency, Int. Stud. Rev., vol. 12, no. 1, pp. 31–52, 2010.

[17]

X. Xue, D. Zhou, F. Chen, X. Yu, Z. Feng, Y. Duan, L. Meng, and M. Zhang, From SOA to VOA: A shift in understanding the operation and evolution of service ecosystem, IEEE Trans. Serv. Comput., vol. 16, no. 1, pp. 315–329, 2023.

[18]

X. Xue, G. Li, D. Zhou, Y. Zhang, L. Zhang, Y. Zhao, Z. Feng, L. Cui, Z. Zhou, X. Sun, et al., Research roadmap of service ecosystems: A crowd intelligence perspective, International Journal of Crowd Science, vol. 6, no. 4, pp. 195–222, 2022.

[19]

F. Wang and L. Guo, Research on system complexity of the digital society, (in Chinese), Management World, vol. 38, no. 9, pp. 208–220, 2022.

[20]

X. Xue, X. Yu, and F. Y. Wang, ChatGPT chats on computational experiments: From interactive intelligence to imaginative intelligence for design of artificial societies and optimization of foundational models, IEEE/CAA J. Autom. Sin., vol. 10, no. 6, pp. 1357–1360, 2023.

[21]
S. Boschert and R. Rosen, Digital twin—The simulation aspect, in Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers, P. Hehenberger and D. Bradley, eds. Cham, Switzerland: Springer, 2016, pp. 59–74.
[22]

F. Y. Wang, Parallel system methods for management and control of complex systems, (in Chinese), Control and Decision, vol. 19, no. 5, pp. 485–489&514, 2004.

[23]
X. Xue, Computational Experiment Methods for Complex Systems: Principles, Models and Cases, (in Chinese). Beijing, China: Beijing Science Press, 2020.
[24]

X. Xue, F. Chen, D. Zhou, X. Wang, M. Lu, and F. Y. Wang, Computational experiments for complex social systems—Part I: The customization of computational model, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 5, pp. 1330–1344, 2022.

[25]

M. Lu, S. Chen, X. Xue, X. Wang, Y. Zhang, Y. Zhang, and F. Y. Wang, Computational experiments for complex social systems—Part II: The evaluation of computational models, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 1224–1236, 2022.

[26]
X. Xue, X. Yu, D. Zhou, C. Peng, X. Wang, D. Liu, and F. Y. Wang, Computational experiments for complex social systems—Part III: The docking of domain models, IEEE Trans. Comput. Soc. Syst., doi: 10.1109/TCSS.2023.3243894.
[27]
I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New Dialogue with Nature. London, UK: Heinemann, 1984.
[28]

X. Xue, S. Wang, B. Gui, and Z. Hou, A computational experiment-based evaluation method for context-aware services in complicated environment, Inf. Sci., vol. 373, pp. 269–286, 2016.

[29]

X. Wang, M. Kang, H. Sun, P. D. Reffye, and F. Y. Wang, DeCASA in AgriVerse: Parallel agriculture for smart villages in metaverses, IEEE/CAA J. Autom. Sin., vol. 9, no. 12, pp. 2055–2062, 2022.

[30]

M. Kang, X. Wang, H. Wang, J. Hua, P. D. Reffye, and F. Y. Wang, The development of AgriVerse: Past, present, and future, IEEE Trans. Syst. Man Cybern, Syst., vol. 53, no. 6, pp. 3718–3727, 2023.

[31]

J. Gu, J. Wang, X. Guo, G. Liu, S. Qin, and Z. Bi, A metaverse-based teaching building evacuation training system with deep reinforcement learning, IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 4, pp. 2209–2219, 2023.

[32]
F. Y. Wang, Parallel intelligence in metaverses: Welcome to Hanoi! IEEE Intell. Syst., vol. 37, no. 1, pp. 16–20, 2022.
[33]
H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, Metaverse for social good: A university campus prototype, in Proc. 29th ACM Int. Conf. Multimedia, Virtual Event, China, 2021, pp. 153–161.
[34]
M. A. I. Mozumder, M. M. Sheeraz, A. Athar, S. Aich, and H. C. Kim, Overview: Technology roadmap of the future trend of metaverse based on IoT, blockchain, AI technique, and medical domain metaverse activity, in Proc. 2022 24th Int. Conf. Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 2022, pp. 256–261.
[35]

H. J. Kwon, A. E. Azzaoui, and J. H. Park, Metaq: A quantum approach for secure and optimized metaverse environment, Hum.-Cent. Comput. Inf. Sci., vol. 12, p. 42, 2022.

[36]

Z. Allam, A. Sharifi, S. E. Bibri, D. S. Jones, and J. Krogstie, The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures, Smart Cities, vol. 5, no. 3, pp. 771–801, 2022.

[37]
M. M. Inceoglu and B. Ciloglugil, Use of metaverse in education, in Proc. Int. Conf. Computational Science and its Applications, Malaga, Spain, 2022, pp. 171–184.
International Journal of Crowd Science
Pages 158-167
Cite this article:
Peng C, Yu X, Ma W, et al. Computational Experiments: Virtual Production and Governance Tool for Metaverse. International Journal of Crowd Science, 2023, 7(4): 158-167. https://doi.org/10.26599/IJCS.2023.9100023

382

Views

19

Downloads

6

Crossref

5

Scopus

Altmetrics

Received: 20 June 2023
Revised: 30 July 2023
Accepted: 07 September 2023
Published: 22 December 2023
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return