AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (595 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

UbiMeta: A Ubiquitous Operating System Model for Metaverse

Yiqiang Chen1,2( )Wuliang Huang1,2,3Xinlong Jiang1,2Teng Zhang1,2Yi Wang1,2Bingjie Yan1,2Zhirui Wang1,2Qian Chen1,2Yunbing Xing1,2,3Dong Li1,2Guodong Long4
Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100190, China
AIER Eye Hospital Group Co., Ltd., Changsha 410015, China
Faculty of Engineering and IT, University of Technology Sydney, Sydney 2007, Australia
Show Author Information

Abstract

The metaverse signifies the amalgamation of virtual and tangible realms through human-computer interaction. The seamless integration of human, cyber, and environments within ubiquitous computing plays a pivotal role in fully harnessing the metaverse’s capabilities. Nevertheless, metaverse operating systems face substantial hurdles in terms of accessing ubiquitous resources, processing information while safeguarding privacy and security, and furnishing artificial intelligence capabilities to downstream applications. To tackle these challenges, this paper introduces the UbiMeta model, a specialized ubiquitous operating system designed specifically for the metaverse. It extends the capabilities of traditional ubiquitous operating systems and focuses on adapting downstream models and operational capacity to effectively function within the metaverse. UbiMeta comprises four layers: the Ubiquitous Resource Management Layer (URML), the Autonomous Information Mastery Layer (AIML), the General Intelligence Mechanism Layer (GIML), and the Metaverse Ecological Model Layer (MEML). The URML facilitates the seamless incorporation and management of various external devices and resources. It provides a framework for integrating and controlling these resources, including virtualization, abstraction, and reuse. The AIML is responsible for perceiving information and safeguarding privacy and security during storage and processing. The GIML leverages large-scale pre-trained deep-learning feature extractors to obtain effective features for processing information. The MEML focuses on constructing metaverse applications using the principles of Model-as-a-Service (MaaS) and the OODA loop (Observation, Orientation, Decision, Action). It leverages the vast amount of information collected by the URML and AIML layers to build a robust metaverse ecosystem. Furthermore, this study explores how UbiMeta enhances user experiences and fosters innovation in various metaverse domains. It highlights the potential of UbiMeta in revolutionizing medical healthcare, industrial practices, education, and agriculture within the metaverse.

References

[1]
H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, Metaverse for social good: A university campus prototype, in Proc. 29th ACM Int. Conf. Multimedia, Virtual Event, China, 2021, pp. 153–161.
[2]

R. Cheng, N. Wu, S. Chen, and B. Han, Will metaverse be NextG Internet? Vision, hype, and reality, IEEE Netw., vol. 36, no. 5, pp. 197–204, 2022.

[3]
A. Silberschatz, J. L. Peterson, and P. B. Galvin, Operating System Concepts. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1991.
[4]

G. D. Ritterbusch and M. R. Teichmann, Defining the metaverse: A systematic literature review, IEEE Access, vol. 11, pp. 12368–12377, 2023.

[5]

H. Mei and Y. Guo, Toward ubiquitous operating systems: A software-defined perspective, Computer, vol. 51, no. 1, pp. 50–56, 2018.

[6]

H. Mei, D. G. Cao, and T. Xie, Ubiquitous operating system: Toward the blue ocean of human-cyber-physical ternary ubiquitous computing mei, Bulletin of Chinese Academy of Sciences (Chinese Version), vol. 37, no. 1, pp. 30–37, 2022.

[7]
N. Stephenson. Snow Crash: A Novel. New York, NY, USA: Bantam Books, 2003.
[8]
J. D. N. Dionisio, and R. Gilbert, 3D virtual worlds and the metaverse: Current status and future possibilities, ACM Comput. Surv., vol. 45, no. 3, pp. 1–38, 2013.
[9]

A. Hendaoui, M. Limayem, and C. W. Thompson, 3D social virtual worlds: Research issues and challenges, IEEE Internet Comput., vol. 12, no. 1, pp. 88–92, 2008.

[10]

H. Wang, H. Ning, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and M. Daneshmand, A survey on the metaverse: The state-of-the-art, technologies, applications, and challenges, IEEE Internet Things J., vol. 10, no. 16, pp. 14671–14688, 2023.

[11]
K. Yoon, S. K. Kim, J. J. Han, S. Han, and M. Preda, MPEG-V: Bridging the Virtual and Real World. Amsterdam, the Netherlands: Academic Press, 2015.
[12]
K. Yoon, S. K. Kim, S. P. Jeong, and J. H. Choi, Interfacing cyber and physical worlds: Introduction to IEEE 2888 standards, in Proc. 2021 IEEE Int. Conf. Intelligent Reality (ICIR), Piscataway, NJ, USA, 2021, pp. 49–50.
[13]
H. Ardiny and E. Khanmirza, The role of AR and VR technologies in education developments: Opportunities and challenges, in Proc. 2018 6th RSI Int. Conf. Robotics and Mechatronics (IcRoM), Tehran, Iran, 2018, pp. 482–487.
[14]

J. D. Azofeifa, J. Noguez, S. Ruiz, J. M. Molina-Espinosa, A. J. Magana, and B. Benes, Systematic review of multimodal human–computer interaction, Informatics, vol. 9, no. 1, p. 13, 2022.

[15]

S. Rostami and M. Maier, The metaverse and beyond: Implementing advanced multiverse realms with smart wearables, IEEE Access, vol. 10, pp. 110796–110806, 2022.

[16]

S. Duan, F. Zhao, H. Yang, J. Hong, Q. Shi, W. Lei, and J. Wu, A pathway into metaverse: Gesture recognition enabled by wearable resistive sensors, Adv. Sens. Res., vol. 2, no. 8, p. 2200054, 2023.

[17]

Y. Daşdemİr, A brain-computer interface with gamification in the metaverse, Dicle Ü niversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 13, no. 4, pp. 645–652, 2022.

[18]
V. Veeraiah, G. P, S. Ahamad, S. B. Talukdar, A. Gupta, and V. Talukdar, Enhancement of meta verse capabilities by IoT integration, in Proc. 2022 2nd Int. Conf. Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2022, pp. 1493–1498.
[19]

Y. Han, D. Niyato, C. Leung, D. I. Kim, K. Zhu, S. Feng, X. Shen, and C. Miao, A dynamic hierarchical framework for IoT-assisted digital twin synchronization in the metaverse, IEEE Internet Things J., vol. 10, no. 1, pp. 268–284, 2023.

[20]
C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and P. Bahl, An operating system for the home, in Proc. 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 2012, pp. 337–352.
[21]
P. Yuan, Y. Guo, and X. Chen, Towards an operating system for the campus, in Proc. 5th Asia-Pacific Symp. on Internetware, Changsha, China, 2013, pp. 1–4.
[22]

Y. Liu, Z. Yu, B. Guo, Q. Han, J. Su, and J. Liao, CrowdOS: A ubiquitous operating system for crowdsourcing and mobile crowd sensing, IEEE Trans. Mob. Comput., vol. 21, no. 3, pp. 878–894, 2022.

[23]

L. Chen, Y. Zhang, B. Tian, Y. Ai, D. Cao, and F. Y. Wang, Parallel driving OS: A ubiquitous operating system for autonomous driving in CPSS, IEEE Trans. Intell. Veh., vol. 7, no. 4, pp. 886–895, 2022.

[24]
P. Voigt and A. von dem Bussche, The EU General Data Protection Regulation (GDPR). Cham, Switzerland: Springer International Publishing, 2017.
[25]

Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen, A survey on metaverse: Fundamentals, security, and privacy, IEEE Commun. Surv. Tutor., vol. 25, no. 1, pp. 319–352, 2023.

[26]

N. Alhirabi, O. Rana, and C. Perera, Security and privacy requirements for the Internet of Things, ACM Trans. Internet Things, vol. 2, no. 1, pp. 1–37, 2021.

[27]

K. Yang, Z. Liu, X. Jia, and X. S. Shen, Time-domain attribute-based access control for cloud-based video content sharing: A cryptographic approach, IEEE Trans. Multimed., vol. 18, no. 5, pp. 940–950, 2016.

[28]

C. Ma, Z. Yan, and C. W. Chen, Scalable access control for privacy-aware media sharing, IEEE Trans. Multimed., vol. 21, no. 1, pp. 173–183, 2019.

[29]
I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial examples, arXiv preprint arXiv: 1412.6572, 2014.
[30]
O. Goldreich, General cryptographic protocols, in Foundations of Cryptography: Volume 2, Basic Applications. New York, NY, USA: Cambridge University Press, 2009, pp.599−764.
[31]
X. Yi, R. Paulet, and E. Bertino, Homomorphic encryption, in Homomorphic Encryption and Applications. Cham, Switzerland: Springer, 2014, pp. 27−47.
[32]

J. Wei, J. Li, Y. Lin, and J. Zhang, LDP-based social content protection for trending topic recommendation, IEEE Internet Things J., vol. 8, no. 6, pp. 4353–4372, 2021.

[33]
T. Zhang, X. Zeng, Y. Zhang, K. Sun, Y. Wang, and Y. Chen, ThermalRing: Gesture and tag inputs enabled by a thermal imaging smart ring, in Proc. 2020 CHI Conf. Human Factors in Computing Systems, Honolulu, HI, USA, 2020, pp. 1–13.
[34]

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models are unsupervised multitask learners, OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

[35]
A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W. Y. Lo, et al., Segment anything, arXiv preprint arXiv: 2304.02643, 2023.
[36]
A. Garza and M. Mergenthaler-Canseco, TimeGPT-1, arXiv preprint arXiv: 2310.03589, 2023.
[37]
L. H. Lee, P. Zhou, C. Zhang, and S. Hosio, What if we have meta GPT? From content singularity to human-metaverse interaction in AIGC era, arXiv preprint arXiv: 2304.07521, 2023.
[38]

R. Raguram, A. M. White, Y. Xu, J. M. Frahm, P. Georgel, and F. Monrose, On the privacy risks of virtual keyboards: Automatic reconstruction of typed input from compromising reflections, IEEE Trans. Dependable Secure Comput., vol. 10, no. 3, pp. 154–167, 2013.

[39]
D. Y. Zhang, Z. Kou, and D. Wang, FedSens: A federated learning approach for smart health sensing with class imbalance in resource constrained edge computing, in Proc. IEEE INFOCOM 2021 - IEEE Conf. Computer Communications, Vancouver, Canada, 2021, pp. 1–10.
[40]
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, Communication-efficient learning of deep networks from decentralized data, arXiv preprint arXiv: 1602.05629, 2016.
[41]
Y. Q. Chen, T. Zhang, X. L. Jiang, Q. Chen, C. L. Gao, and W. L. Huang, Fedbone: Towards large-scale federated multitask learning, arXiv preprint arXiv: 2306.17465v1, 2023.
[42]
F. Yu, W. Zhang, Z. Qin, Z. Xu, D. Wang, C. Liu, Z. Tian, and X. Chen, Fed2: Feature-aligned federated learning, in Proc. 27th ACM SIGKDD Conf. Knowledge Discovery & Data Mining, Virtual Event, Singapore, 2021, pp. 2066–2074.
[43]

R. E. Enck, The OODA loop, Home Heath. Care Manag. Pract., vol. 24, no. 3, pp. 123–124, 2012.

[44]
C. Richards, Boyd’s OODA loop, Necesse, vol. 5, no. 1, pp. 142−165, 2020.
[45]

G. Wei, Y. Jiao, G. Ding, Y. Xu, B. Zhang, and D. Guo, MetaRadio: Bridging wireless communications between real and virtual spaces, IEEE Commun. Mag., vol. 61, no. 6, pp. 140–146, 2023.

International Journal of Crowd Science
Pages 180-189
Cite this article:
Chen Y, Huang W, Jiang X, et al. UbiMeta: A Ubiquitous Operating System Model for Metaverse. International Journal of Crowd Science, 2023, 7(4): 180-189. https://doi.org/10.26599/IJCS.2023.9100028

585

Views

47

Downloads

5

Crossref

4

Scopus

Altmetrics

Received: 09 July 2023
Revised: 08 November 2023
Accepted: 09 November 2023
Published: 22 December 2023
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return