Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The difficulty of reducing the diameter of lutetium oxide (Lu2O3) continuous fibers below 50 μm not only limits the flexibility of the sample but also seriously affects their application and development in high-energy lasers. In this work, a Lu-containing precursor with high ceramic yield was used as raw material, fiberized into precursor fibers by dry spinning. The pressure-assisted water vapor pretreatment (PAWVT) method was creatively proposed, and the effect of pretreatment temperature on the ceramization behavior of the precursor fibers was studied. By regulating the decomposition behavior of organic components in the precursor, the problem of fiber pulverization during heat treatment was effectively solved, and the Lu2O3 continuous fibers with a diameter of 40 μm were obtained. Compared with the current reported results, the diameter was reduced by about 50%, successfully breaking through the diameter limitation of Lu2O3 continuous fibers. In addition, the tensile strength, elastic modulus, flexibility, and temperature resistance of Lu2O3 continuous fibers were researched for the first time. The tensile strength and elastic modulus of Lu2O3 continuous fibers were 373.23 MPa and 31.55 GPa, respectively. The as-obtained flexible Lu2O3 continuous fibers with a limit radius of curvature of 3.5–4.5 mm had a temperature resistance of not lower than 1300 ℃, which established a solid foundation for the expansion of their application form in the field of high-energy lasers.
9773
Views
380
Downloads
5
Crossref
6
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.