Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It is generally reported that the grain growth in high-entropy ceramics at high temperatures is relatively slower than that in the corresponding single-component ceramics owing to the so-called sluggish diffusion effect. In this study, we report a fast grain growth phenomenon in the high-entropy ceramics (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)MgAl11O19 (HEMA) prepared by a conventional solid-state reaction method. The results demonstrate that the grain sizes of the as-sintered HEMA ceramics are larger than those of the corresponding five single-component ceramics prepared by the same pressureless sintering process, and the grain growth rate of HEMA ceramics is obviously higher than those of the five single-component ceramics during the subsequent heat treatment. Such fast grain growth phenomenon indicates that the sluggish diffusion effect cannot dominate the grain growth behavior of the current high-entropy ceramics. The X-ray photoelectron spectroscopy (XPS) analysis reveals that there are more oxygen vacancies (OV) in the high-entropy ceramics than those in the single-component ceramics owing to the variable valance states of Eu ion. The high-temperature electrical conductivities of the HEMA ceramics support this analysis. It is considered that the high concentration of OV and its high mobility in HEMA ceramics contribute to the accelerated migration and diffusion of cations and consequently increase the grain growth rate. Based on this study, it is believed that multiple intrinsic factors for the high-entropy ceramic system will simultaneously determine the grain growth behavior at high temperatures.
5367
Views
740
Downloads
21
Crossref
21
Web of Science
23
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.