Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Spiral fibers were considered to be an ideal toughening phase of ultra-high torsional release effect. In this work, ZrB2 (Z)–20 vol% SiC (S) spiral fiber (ZSsf) with controllable structure was prepared by a combination approach of liquid rope effect and non-solvent-induced phase separation. Dominantly depended on the kinematic viscosity (η), dropping height (H), and flow rate (Q), the geometric parameters of ZSsf involving filament diameter (d) and coil diameter (D) were followed the relationship of d ≈ 0.516×10−3Q1/2H−1/4 and D ≈ 0.25×10–3(Q/H)1/3, respectively, within the optimized η of 10–15 Pa·s. Three different microstructures of ZSsf were achieved by adjusting the polymer/solvent/non-solvent system assisted with phase diagram calculation, including dense, hollow, and hierarchical pore structures. The ZrB2–SiC with 1 wt% ZSsf composites prepared by hot isostatic pressing (HIP) exhibited a ~30% increase in fracture toughness (KIC, 4.41 MPa·m1/2) compared with the ZrB2–SiC composite, where the microscopic fracture toughness of the ZSsf was ~80% higher than that of the matrix. The fibers with a ~10 nm in-situ-synthesized graphite phase amongst grain boundaries of ZrB2 and SiC changed the fracture mode, and promoted the crack deflection and pull-out adjacent the interface of matrix and the fiber.
4766
Views
358
Downloads
10
Crossref
7
Web of Science
10
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.