Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ceramics are considered intrinsically brittle at macro scale due to the lack of slip mechanism and pre-existing defects, which greatly limits their potential applications in emerging fields including wearable electronic devices and flexible display. In this contribution, we developed BiFeO3/SiO2 dual-networks with exceptional flexibility through a coupled electronetting/electrospun method. The hybrid nanostructured networks endow the material with high tensile strength (2.7 MPa), excellent flexibility (80% recoverable deformation), and robust fatigue resistance performance (maintain flexibility after a 1000-cyclic compress test). After in-situ compounded with dielectric polymer via a layer-by-layer solution casting method, the resultant three-dimensional (3D) composite film exhibits a twice higher dielectric constant (εr) than polyether imide (PEI) film. More importantly, the breakdown strength of the 3D composite film is almost the same as that of the PEI film, resulting in an enhanced energy density of ~6.0 J/cm3 and a high efficiency of 80% at 4.58 MV/cm. The unique structure, combined with the excellent balance between mechanical and dielectric properties in flexible structures, is of critical significance to the design of flexible functional ceramics and broadening their applications in wearable electric devices.
11706
Views
397
Downloads
12
Crossref
11
Web of Science
12
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.