Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Si-based thermoelectric (TE) materials are exhibiting remarkable perspectives in self-energized applications with their special advantages. However, the relatively high total thermal conductivity (κ) prevents their TE enhancement. Here, a strategy of co-compositing dual oxides was implemented for enhancing the TE properties of p-type Si80Ge20 bulks. Composited Ga2O3 was demonstrated to enhance the power factor (PF) due to the crystallization-induced effect of produced Ga by decomposition on SiGe matrix. Associating with compositing SiO2 aerogel (a-SiO2) powder, not only introduced the fine amorphous inclusions and decreased the grain size of host matrix, but also various nano morphologies were formed, i.e., nano inclusions, precipitations, twin boundaries (TBs), and faults. Combining with the eutectic Ge, hierarchical scattering centers impeded the phonon transport comprehensively (decreasing the phonon group velocity (
2122
Views
322
Downloads
5
Crossref
5
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.