Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To achieve lightweight B4C-based composite ceramics with high electrical conductivities and hardness, B4C–TiB2 ceramics were fabricated by reactive spark plasma sintering (SPS) using B4C, TiC, and amorphous B as raw materials. During the sintering process, fine B4C–TiB2 composite particles are firstly in situ synthesized by the reaction between TiC and B. Then, large raw B4C particles tend to grow at the cost of small B4C particles. Finally, small TiB2 grains surround large B4C grains to create a three-dimensional interconnected intergranular TiB2 network, which is beneficial for an electro-conductive network and greatly improves the conductivity of the ceramics. The effect of the B4C particle size on the mechanical and electrical properties of the ceramics was investigated. When the particle size of initial B4C powders is 10.29 µm, the obtained B4C–15 vol% TiB2 composite ceramics exhibit an electrical conductivity as high as 2.79×104 S/m and a density as low as 2.782 g/cm3, together with excellent mechanical properties including flexural strength, Vickers hardness (HV), and fracture toughness (KIC) of 676 MPa, 28.89 GPa, and 5.28 MPa·m1/2, respectively.
12592
Views
867
Downloads
19
Crossref
18
Web of Science
18
Scopus
3
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.