Graphical Abstract

Complex ion substitution is gaining more attention as an appealing method of modifying the structure and performance of microwave ceramics. In this work, Li2Zn[Ti1−x(Ni1/3Nb2/3)x]3O8 (LZTNNx, 0 ≤ x ≤ 0.3) ceramics were designed based on the complex ion substitution strategy, following the substitution rule of radius and valence to investigate the relationship among phase compositions (containing oxygen vacancies and Ti3+ ions), microstructures, and microwave dielectric characteristics of the LZTNNx ceramics. The samples maintained a single Li2ZnTi3O8 solid solution phase as x ≤ 0.2, whereas the sample of x = 0.3 produced a second phase with the LiNbO3 structure. The appropriate amount of (Ni1/3Nb2/3)4+ substitution could slightly improve the densification of the LZTNNx ceramics due to the formation of the Li2ZnTi3O8 solid solution accompanied by a decrease in the average grain size. The presence of a new A1g Raman active band at about 848 cm−1 indicated that local symmetry changed, affecting atomic interactions of the LZTNNx ceramics. The variation of the relative dielectric constant (εr) was closely related to the molar volume ionic polarizability (