Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this work, novel carbon nanotube (CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core–shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor derived ceramic approach. Ppolymeric precursor characterization as well as phase evolution, microstructure, and electromagnetic wave (EMW) absorption properties of the ceramics were investigated in detail. The results show that the in-situ formed CNTs and magnetic CoSi@C nanoparticles provide a synergistic effect on both dielectric loss (tanδε) and magnetic loss, leading to outstanding EMW absorption properties of the ceramics annealed at only 1100 ℃. (i) For the Co feeding of 6.25 wt%, the minimum reflection loss (RLmin) is −53.1 dB, and the effective absorption bandwidth (EAB) is 4.96 GHz (7.12–12.08 GHz) with a ceramic–paraffin hybrid sample thickness of 3.10 mm, achieving full X-band coverage; (ii) for the Co feeding of 9.09 wt%, the RLmin value of −66.4 dB and the EAB value of 3.04 GHz (8.40–11.44 GHz) were achieved with a thickness of only 2.27 mm. Therefore, the present CNT/CoSi/SiOC nanocomposite ceramics have potential applications for thin, lightweight, and efficient EMW absorption in harsh environments.
2517
Views
599
Downloads
20
Crossref
22
Web of Science
22
Scopus
3
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.