Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mechanical characterization of dielectric ceramics, which have drawn extensive attention in wireless communication, remains challenging. The micromechanical properties with the microstructures of dielectric ceramic BaO–Sm2O3–5TiO2 (BST) were assessed by nanoindentation, microhardness, and microscratch tests under different indenters, along with the X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Accurate determination of elastic modulus (EIT) (i.e., 260 GPa) and indentation hardness (HIT) (i.e., 16.2 GPa) of brittle BST ceramic by the instrumented indentation technique requires low loads with little indentation-induced damage. The elastic modulus and indentation hardness were analyzed by different methodologies such as energy-based approach, displacement-based approach, and elastic recovery of Knoop imprint. Consistent values (about 3.1 MPa·m1/2) of fracture toughness (KC) of BST ceramic were obtained by different methods such as the Vickers indenter-induced cracking method, energy-based nanoindentation approaches, and linear elastic fracture mechanics (LEFM)-based scratch approach with a spherical indenter, demonstrating successful applications of indentation and scratch methods in characterizing fracture properties of brittle solids. The deterioration of elastic modulus or indentation hardness with the increase in indentation load (F) is caused by indentation-induced damage and can be used to determine the fracture toughness of material by energy-based nanoindentation approaches, and the critical void volume fraction (f*) is 0.27 (or 0.18) if elastic modulus (or indentation hardness) of the brittle BST ceramic is used. The fracture work at the critical load corresponding to the initial decrease in elastic modulus or indentation hardness can also be used to assess the fracture toughness of brittle solids, opening new venues of the application of nanoindentation test as a means to characterize the fracture toughness of brittle ceramics.
2608
Views
583
Downloads
2
Crossref
17
Web of Science
17
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.