Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multilayer ceramic actuator (MLCA) has been widely employed in actuators due to the large cumulative displacement under the low driving voltage. In this work, the MLCA devices consisting of a lead-free MnCO3- and CuO-doped 0.96(K0.48Na0.52)(Nb0.96Ta0.04)O3–0.04CaZrO3 piezoelectric ceramics and a base nickel (Ni) metal inner electrode were well co-fired by the two-step sintering process in a reducing atmosphere. The ceramic layer/electrode interface is well-integrated and clearly continuous without distinct interdiffusion and chemical reaction, which is beneficial to the electrical reliability of the MLCA. As a result, the MLCA laminated with nine active ceramic layers obtains an ultrahigh piezoelectric coefficient d33 of 3157 pC/N, about 9 times than bulk ceramics. The 0.5 mm-thick MLCA composed of a series of ~50 μm-thick ceramic layers and ~3 μm-thick Ni electrodes reaches a high 1.8 μm displacement under the low applied voltage of 200 V (the same displacement requires a voltage as high as 3700 V for ~1 mm-thick bulk ceramics). The excellent electrical performance and low-cost base electrode reveal that the (K,Na)NbO3 (KNN)-based MLCAs are promising lead-free candidate for actuator application.
1985
Views
425
Downloads
5
Crossref
8
Web of Science
8
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.