Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The sodium (Na) and Ce co-doped calcium bismuth titanate (CBT; CaBi4Ti4O15) Aurivillius ceramics in a Ca1−x(Na0.5Ce0.5)xBi4Ti4O15 (CNCBT; doping content (x) = 0, 0.03, 0.05, 0.08 and 0.12) system were synthesized by the conventional solid-state sintering method. All compositions show a single-phase orthorhombic (space group: A21am) structure at room temperature. The shift of the Curie point (TC) towards lower temperatures (T) on doping results from the increased tolerance factor (t). The substitution-enhanced ferroelectric performance with large maximum polarization (Pm) and facilitated domain switching is evidenced by the developed electrical polarization–electric field (P–E) and electrical current–electric field (I–E) hysteresis loops. The piezoelectric coefficient (d33 = 20.5± 0.1 pC/N) of the x = 0.12 sample is about four times larger than that of pure CBT. The improved piezoelectric properties can be attributed to the high remanent polarization (Pr) and relatively high dielectric permittivity (ε′). In addition, multi-sized (micron and sub-micron) domain structures were observed in the CNCBT ceramics by the piezoresponse force microscope (PFM). The multiple-sized ferroelectric domain structure with smaller domains is beneficial to the easy domain switching, enhanced ferroelectric performance, and improved piezoelectric properties of the CNCBT ceramics. The designed Aurivillius-phase ferroelectric ceramics with the TC around 765 ℃ and high piezoelectric coefficient (d33) are suitable for high-temperature piezoelectric applications.
2609
Views
499
Downloads
23
Crossref
16
Web of Science
20
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.