Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the assessment of food quality, geranyl acetone plays a crucial role as a volatile organic compound (VOC) biomarker for diverse agricultural products, while the ultralow concentration detection meeting application requirements has been barely studied. Herein, an iron (Fe)-doped WO3−x gas sensor was employed for greatly sensitive, selective, and scalable geranyl acetone detection. The results proved that precisely-regulated oxygen vacancy (OV) and sophisticatedly-active electron transition of Fe-doped WO3−x nanoparticles were fulfilled by modifying the doping amount of Fe3+, leading to the prominently enhanced sensitivity (23.47 at 6 ppm), low limit of detection (LOD) (237 ppb), optimal selectivity, and outstanding long-term stability. Furthermore, the enhancing mechanism of gas sensing performance was substantiated through density functional theory (DFT) calculation, while the practical application for the evaluation of spoiled cooked rice was conducted as well. This study demonstrates a reliable method for detecting a VOC biomarker in cooked rice, which can ensure food security and improve palatability of cooked rice.
1820
Views
325
Downloads
8
Crossref
0
Web of Science
10
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.