Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photocatalytic non-oxidative coupling of methane (PNOCM) is a mild and cost-effective method for the production of multicarbon compounds. However, the separation of photogenerated charges and activation of methane (CH4) are the main challenges for this reaction. Here, single crystal-like TiO2 nanotubes (VO-p-TNTs) with oxygen vacancies (VO) and preferential orientation were prepared and applied to PNOCM. The results demonstrate that the significantly enhanced photocatalytic performance is mainly related to the strong synergistic effect between preferential orientation and VO. The preferential orientation of VO-p-TNT along the [001] direction reduces the formation of complex centers at grain boundaries as the form of interfacial states and potential barriers, which improves the separation and transport of photogenerated carriers. Meanwhile, VO provides abundant coordination unsaturated sites for CH4 chemisorption and also acts as electron traps to hinder the recombination of electrons and holes, establishing an effective electron transfer channel between the adsorbed CH4 molecule and photocatalyst, thus weakening the C–H bond. In addition, the introduction of VO broadens the light absorption range. As a result, VO-p-TNT exhibits excellent PNOCM performance and provides new insights into catalyst design for CH4 conversion.
1728
Views
245
Downloads
6
Crossref
7
Web of Science
7
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.