Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cf/TaxHf1−xC–SiC composites are ideal thermal structural materials for service under extreme conditions of hypersonic vehicles. However, how to synthesize TaxHf1-xC powders and efficiently fabricate Cf/TaxHf1-xC–SiC composites still faces some challenges. Furthermore, mechanical properties and thermophysical properties of TaxHf1−xC vary with the composition, but not monotonically. In-depth analysis of mechanical behaviors of the Cf/TaxHf1−xC–SiC composites is extremely important for their development and applications. In this study, the TaxHf1−xC powders (x = 0.2, 0.5, 0.8) were successfully synthesized via solid solution of TaC and HfC at a relatively low temperature of 1800 ℃, with a small amount of Si as an additive. Subsequently, the efficient fabrication of 2D-Cf/TaxHf1–xC–SiC composites was achieved by slurry impregnation and lamination (SIL) combined with precursor infiltration and pyrolysis (PIP). In addition, the mechanical behavior of the composites was investigated systematically. It is demonstrated that the composites present remarkable non-brittle fractures, including a large number of fiber pull out and interphase debonding. Also, the fracture failure involves a complex process of microcrack generation and propagation, matrix cracking, and layer fracture. Moreover, the interfacial bonding between the fibers and the matrix is enhanced as the Ta∶Hf ratio decreases from 4∶1 to 1∶4. As a result, Cf/Ta0.2Hf0.8C–SiC composites exhibit exceptional flexural strength of 437±19 MPa, improved by 46% compared with Cf/Ta0.8Hf0.2C–SiC (299±19 MPa). This study provides a new perception of design and fabrication of ultra-high-temperature ceramic (UHTC) matrix composites with high performance.
1620
Views
322
Downloads
6
Crossref
0
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.