Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A new medium entropy material LiCo0.25Fe0.25Mn0.25Ni0.25O2 (LCFMN) is proposed as a cathode for proton-conducting solid oxide fuel cells (H-SOFCs). Unlike traditional LiXO2 (X = Co, Fe, Mn, Ni) lithiated oxides, which have issues like phase impurity, poor chemical compatibility, or poor fuel cell performance, the new LCFMN material mitigates these problems, allowing for the successful preparation of pure phase LCFMN with good chemical and thermal compatibility to the electrolyte. Furthermore, the entropy engineering strategy is found to weaken the covalence bond between the metal and oxygen in the LCFMN lattice, favoring the creation of oxygen vacancies and increasing cathode activity. As a result, the H-SOFC with the LCFMN cathode achieves an unprecedented fuel cell output of 1803 mW·cm−2 at 700 ℃, the highest ever reported for H-SOFCs with lithiated oxide cathodes. In addition to high fuel cell performance, the LCFMN cathode permits stable fuel cell operation for more than 450 h without visible degradation, demonstrating that LCFMN is a suitable cathode choice for H-SOFCs that combining high performance and good stability.
2229
Views
447
Downloads
25
Crossref
25
Web of Science
26
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.