Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In recent years, high-entropy metal carbides (HECs) have attracted significant attention due to their exceptional physical and chemical properties. The combination of excellent performance exhibited by bulk HEC ceramics and distinctive geometric characteristics has paved the way for the emergence of one-dimensional (1D) HECs as novel materials with unique development potential. Herein, we successfully fabricated novel (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C nanowires derived via Fe-assisted single-sourced precursor pyrolysis. Prior to the synthesis of the nanowires, the composition and microstructure of (Ti,Zr,Hf,Nb,Ta)-containing precursor (PHECs) were analyzed, and divinylbenzene (DVB) was used to accelerate the conversion process of the precursor and contribute to the formation of HECs, which also provided a partial carbon source for the nanowire growth. Additionally, multi-branched, single-branched, and single-branched bending nanowires were synthesized by adjusting the ratio of PHECs to DVB. The obtained single-branched (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C nanowires possessed smooth surfaces with an average diameter of 130–150 nm and a length of several tens of micrometers, which were a single-crystal structure and typically grew along the [1
1839
Views
492
Downloads
3
Crossref
4
Web of Science
4
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.