Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Due to chemical inertness of nickel and boron, the preparation of nickel borides and corresponding layered ternary transition metal borides Ni3ZnB2 (MAB phase) has always required high-temperature and/or high-pressure conditions. Yet, an innovative and efficient approach to preparing Ni3ZnB2 at only 600 ℃ and without applied pressure is presented in this study. It is discovered that by simply adjusting the temperature, a phase transition from Ni3ZnB2 to Ni4B3 with a layered structure could be induced. This transition between the binary-component and the ternary-component brings about significant variation in electromagnetic wave (EMW) shielding/absorption performance of prepared borides. For instance, Ni2B has good EMW shielding performance (42.54 dB in X band) and Ni3ZnB2 is of weak EMW shielding (13.43 dB in X band); Ni3ZnB2 has poor EMW absorption performance (−5 dB) while Ni4B3 has excellent EMW absorption performance (−45.19 dB) at a thickness of 2.7 mm with effective absorption bandwidth (10.4 GHz).
1578
Views
320
Downloads
17
Crossref
14
Web of Science
16
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.