Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
For the first time, the flash sintering (FS) of high-purity alumina at room temperature, which was previously considered unachievable due to its low electrical conductivity, was conducted herein. The electrical arc originating from surface flashover was harnessed to induce FS at room temperature and low air pressure. The successful FS of high-purity alumina was realized at 60 kPa under the arc constraint, resulting in a notable relative density of the alumina sample of 98.7%. The electric–thermal coupling between the arc and high-purity alumina sample during the arc-induced FS process was analyzed via the finite element simulation method. The results revealed the thermal and electrical effects of the arc on the sample, which ultimately enhance the electrical conductivity of the alumina sample. The formation of a conductive channel on the sample surface, a result of increased electrical conductivity, was the pivotal factor in achieving FS in high-purity alumina at room temperature. The arc constraint technique can be applied to numerous materials, such as ionic conductors, semiconductors, and even insulators, under room-temperature and low-air-pressure conditions.
1393
Views
346
Downloads
4
Crossref
7
Web of Science
7
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.