Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The rapid miniaturization and high integration of modern electronic devices have brought an increasing demand for polymer-based thermal management materials with higher thermal conductivity. Boron nitride nanosheets (BNNs) have been widely used as thermally conductive fillers benefiting from the extremely high intrinsic thermal conductivity. However, the small lateral size and weak interface bonding of BNNs enabled them to only form thermally conductive networks through physical overlap, resulting in high interfacial thermal resistance. To address this issue, an innovative strategy based on interface engineering was proposed in this study. High-aspect-ratio boron nitride belts (BNbs) were successfully synthesized by carbon thermal reduction nitridation method through the in-situ generation and sintering of BNNs. The surface of BNb showed the sintering of numerous smaller-sized BNNs, which precisely addresses the issue of weak interfacial bonding between BNNs. On this basis, the as-synthesized BNbs were combined with nano-fibrillated cellulose (NFC) to prepare NFC/BNb composite films through a facile vacuum filtration process. Due to the thermally conductive network formed by the horizontal oriented arrangement of BNb and their particular morphological advantages, the NFC/BNb films demonstrated significantly higher in-plane thermal conductivity than that of NFC/BNNs films, achieving the highest value of 19.119 W·m−1·K−1 at a 20 wt% filling fraction. In addition, the NFC/BNb films also exhibited superior thermal stability, mechanical strength, flexibility, and electrical insulation performance, suggesting the significant application potential of the designed BNb fillers in the thermal management field.
1738
Views
260
Downloads
5
Crossref
7
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.