AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India

Bakuru Anandagajapathi Raju1( )Palavai Venkateswara Rao1Mangalampalli Subrahmanyam1
Department of Geophysics, Colleges of Science & Technology, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
Show Author Information

Abstract

This study aimed to explore groundwater potential zones in the EGMB of Alluri Seetharama Raju district, Andhra Pradesh, India, for drinking and agriculture purposes. To achieve this goal, 72 Vertical Electrical Soundings (VES) were conducted using the Schlumberger electrode configuration. The resistivity sounding data were analyzed to determine the aquifer thickness, basement depth, Dar-Zarrouk parameters, and aquifer transmissivity. Spatial distribution maps were generated for these parameters to understand the subsurface formation. The analysis revealed a linear groundwater potential zone (8.46 km2) in the eastern part of the study area, extending in the NNE-SSW direction for 9.6 km. Six VES locations (P24, P27, P29, P30, P33, and P38) in this zone exhibit good potential (>30 m aquifer thickness), while the three VES locations (OP19, P5, and P46) in the central region are recommended for drilling bore wells. Additionally, moderate aquifer thickness (20–30 m) are identified in other VES locations (OP14, OP20, P4, P10, P12, P13, P15, P17, P18, P31, P46, and P50) along streams in the western and central part of the area, which can yield reasonable quantities of water. This information is useful for groundwater exploration and watershed management to meet the demands of tribal population in the study area.

References

 

Ammar AI, Kruse SE. 2016. Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian shield, Saudi Arabia. Journal of African Earth Sciences, 116: 5667. DOI:10.1016/j.jafrearsci.2015.12.020.

 

Anandagajapathi RB, Venkateswara RP, Subrahmanyam M. 2020. Integration of GIS and remote sensing in groundwater investigations: A case study from Visakhapatnam District, India. Journal of India Geophysics Union, 24(5): 50−63.

 

Ankidawa B, Ishaku J, Hassan A. 2019. Estimation of aquifer transmissivity using Dar-Zarrouk parameters derived from resistivity soundings on the floodplain of river Dadin kowa, Gombe state, Northeastern Nigeria. Computer Engineering Physics Model, 1(4): 36−52. DOI:10.22115/cepm.2018.129584.1024.

 

Anudu GK, Onuba LN, Ufondu LS. 2011. Geo-electric sounding for groundwater exploration in the crystalline basement terrain around onipe and adjoining areas, Southwestern Nigeria. Journal of Applied Technology in Environmental Sanitation, 1: 343−354.

 

Atakpo EA. 2013. Aquifer vulnerability investigation using geo-electric method in parts of sapele local government area of delta state, Nigeria. Nigerian Journal of Basic Application Science, 21(1): 11−19. DOI:10.4314/njbas.v21i1.2.

 

Awni T, Batayneh. 2013. The estimation and significance of Dar-Zarrouk parameters in the exploration of quality affecting the Gulf of Aqaba coastal aquifer systems. Journal of Coast Conservation, 17: 623−635. DOI:10.1007/S11852-013-02614.

 

Ayolabi EA, Folorunso AF, Oloruntola MO. 2010. Constraining causes of structural failure using electrical resistivity tomography (ERT): A case study of Lagos, Southwestern, Nigeria. Mineral Wealth, 156(4): 7−18. DOI:10.3997/2214-4609-pdb.175.SAGEEP109.

 
Bobachev A. 2003. Resistivity sounding interpretation IPI2WIN: Version 3.0. 1, A7. 01. 03. Moscow State University.
 
CGWB. 2019. Groundwater brochure Visakhapatnam district, Andhra Pradesh, central ground water board, Ministry of water resources, government of India.
 

Danso SY, Ma Y. 2023. Geospatial techniques for groundwater potential zones delineation in a coastal municipality, Ghana. The Egyptian Journal of Remote Sensing and Space Science, 26(1): 75−84. DOI:https://doi.org/10.1016/j.ejrs.2022.12.004.

 

Deng QJ, Wei LI, Zhu QJ, et al. 2020. An analysis of the characteristics of water storage structure and the practice of groundwater exploration in the basalt area of ​​Zhangbei County, Bashang, Hebei Province. Geological Bulletin of China, 39(12): 1899−1907.

 
Dor N, Syafalni S, Abustan I, et al. 2011. Verification of surface-groundwater connectivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resource Manage, 25: 2837–2853.
 

Elango L. 2014. Hydraulic conductivity issues, determinations and application. Croatia Environmental Processes, 1: 613−616. DOI:10.1007/s40710-000337.

 
Fashae OA, Tijani MN, Talabi AO, et al. 2014. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Journal of Applied Water Science, 4: 19–38.
 
GSI. 2001. District resource map, geological survey of India. Visakhapatnam district, Andhra Pradesh, India.
 

Gumilar UN, Andi AN, Pulung AP, et al. 2023. Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia. Environment, Development and Sustainability, 25: 1876−1898. DOI:10.1007/s10668-021-02103-7.

 

Gupta G, Patil SN, Padmane ST, et al. 2015. Geoelectric investigation to delineate groundwater potential and recharge zones in Suki river basin, north Maharashtra. Journal of Earth System Science, 124(7): 1487−1501. DOI:10.1007/s12040-015-0615-4.

 

Gupta G, Vinit CE, Saumen M. 2012. Geo-electrical investigation for potential groundwater zones in parts of Ratnagiri and Kolhapur districts, Maharashtra. Journal of India Geophysics Union, 9(1): 27−38.

 
Hamzah U, Samudin AR, Malim EP. 2007. Groundwater investigation in Kuala Selang or using vertical electric sounding (VES) surveys. Environmental Geology, 51: 1349–1359.
 

Heigold PC, Gilkeson RH, Cartwright K, et al. 1979. Aquifer transmissivity from surficial electrical methods. Ground Water, 17(4): 338−345. DOI:10.1111/J.1745-6584.1979.Tb03326.X.

 

Kang X, Shi X, Deng Y, et al. 2018. Coupled hydro-geophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble kalman filtering. Journal of Hydrology, 567: 149−164. DOI:10.1016/J.JhydrOl.2018.10.019.

 

Kumar TJR, Balasubramanian A, Kumar RS, et al. 2016. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar–Uppodai watershed, Tamil Nadu, India. Applied Water Science, 6: 179−186. DOI:10.1007/s13201-014-0216-4.

 

Loke MH, Chambers JE, Rucker DF, et al. 2013. Recent developments in the direct-current geo-electrical imaging method. Journal of Applied Geophysics, 95: 135−156. DOI:10.1016/J.Japp.geo.2013.02.017.

 

Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529−556. DOI:10.1190/1.1437342.

 

Maja B, Andrej S, Ivan KC, et al. 2020. Characterization of aquifers in metamorphic rocks by combined use of electrical resistivity tomography and monitoring of spring hydrodynamics. Geosciences, 10: 137. DOI:10.3390/Geosciences10040137.

 

Obiora DN, Ibuot JC, George JN. 2016. Evaluation of aquifer potential, geo-electric and hydraulic parameters in Ezza north, southeastern Nigeria, using geo-electric sounding. International Journal of Environmental Science and Technology, 13: 435−444. DOI:10.1007/S13762-015-0886-Y.

 

Offodile MI. 1983. The occurrence and exploitation of groundwater in Nigeria basement complex. Journal of Mining Geology, 20(3): 131−146.

 
Oladapo MI, Akintorinwa OJ. 2007. Hydrogeophysical study of Ogbese southwestern Nigeria. Global Journal of Pure Applied Science, 13(1): 55–61.
 

Olasehinde, PI, Bayewu OO. 2011. Evaluation of electrical resistivity anisotropy in Geological mapping: A case study of Odo area, west central Nigeria. African Journal of Environmental Science and Technology, 5(7): 553−566. DOI:10.4314/ajest.v5i7.72045.

 
Orellana E, Mooney HM. 1966. Master curves for Schlumberger arrangement. Madrid, P. 34.
 
Oteri AU. 1981. Geo-electric investigation of saline contamination of chalk aquifer by mine drainage water at Tilmanstone, England. Geoexploration, 19(3): 179–192.
 

Rustadi, Darmawan IGB, Haerudin N, et al. 2022. Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia. Journal of Groundwater Science and Engineering, 10(1): 10−18. DOI:10.19637/j.cnki.2305-7068.2022.01.002.

 
Sathiyamoorthy M, Madhavi G. 2018. Delineation of groundwater potential and recharge zone using electrical resistivity method around Veeranam Tank, Tamil Nadu, India. Journal of the Institution of Engineers (India), Series A 99.4 (2018): 637-645.
 

Seker UE, Efe S. 2023. Comparative economic analysis of air conditioning system with groundwater source heat pump in general-purpose buildings: A case study for kayseri. Renewable Energy, 204: 372−381.

 
Shailaja G, Gupta G, Suneetha N, et al. 2019. Assessment of aquifer zones and its protection via second-order geo-electric indices in parts of drought-prone region of deccan volcanic province, Maharashtra, India. Journal of Earth System Science, 128: 78.
 
Singh S, Gautam PK, Kumar P, et al. 2021. Delineating the characteristics of saline water intrusion in the coastal aquifers of Tamil Nadu, India by analyzing the Dar-Zarrouk parameters. Contributions to Geophysics and Geodesy, 51(2): 141-163.
 
Singh CL, Singh SN. 1970. Some geo-electrical investigations for potential groundwater in part of Azamgrah area of UP. Pure and Applied Geophysics, 82: 270–85.
 
Sitharam TG, Anbazhagan P, Ganesha Raj K. 2006. Use of remote sensing and seismotectonic parameters for seismic hazard analysis of Bangalore. Natural Hazards and Earth System Science, 6: 927–939.
 

Sitharam TG, Anbazhagan P. 2007. Seismic hazard analysis for the Bangalore region. Natural Hazards, 40: 261−278.

 

Sri N, Singhal DC. 1981. Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. Journal of Hydrology, 50: 393−399. DOI:10.1016/0022-1694(81)90082-2.

 
Subramanian TS, Marykutty A. 2019. Computation of aquifer parameters using geo-electrical techniques for the north Chennai coastal aquifer. Indian Journal of Geo Marine Sciences, 48: 1298-1306. https://doi.org/10.1007/s10668-021-02103-7
 

Subrahmanyam M, Venkateswara Rao P. 2017a. A note on the advantages of converting schlumberger VES data into radial dipole VES data. Journal of Geophysics, 28(4): 248−257.

 

Subrahmanyam M, Venkateswara RP. 2017b. Delineation of groundwater potential zones using geo-electrical surveys in SSW part of Yeleru river basin, East Godavari District, Andhra Pradesh. Journal of Indian Geophysics Union, 21(6): 465−473.

 

Suneetha NG, Gupta G, Shailaja G, et al. 2021. Spatial behavior of the Dar-Zarrouk parameters for exploration and differentiation of water bodies aquifers in parts of konkan coast of Maharashtra, India. Journal of Coastal Conservation, 25: 11. DOI:10.1007/S11852-021-00807-6.

 
Todd KD. 1980. Groundwater Hydrology, Third Ed. New York, John Wiley and Sons: 636.
 

Venkateswara RP, Subrahmanyam M, Ratnakar D. 2019a. Performance evaluation of different interpretation techniques of vertical electrical sounding data. Journal of Indian Geophysics Union, 23(1): 55−68.

 

Venkateswara RP, Subrahmanyam M, Ramdas P. 2019b. Delineation of groundwater potential zones in hard rock basement terrains of EastGodavari District, Andhra Pradesh, India. Journal of Indian Geophysics Union, 23(5): 408−419.

 

Venkateswara RP, Mangalampalli S, Bakuru AR. 2021. Groundwater exploration in hard rock terrains of East Godavari District, Andhra Pradesh, India using AHP and WIO analyses together with geoelectrical surveys. AIMS Geosciences, 7(2): 243−266. DOI:10.3934/geosci.2021015.

 
Venkateswara RP, Mangalampalli S, Bakuru AR. 2022. Investigation of groundwater potential zones in hard rock terrains along EGMB, India, using remote sensing, geoelectrical and hydrological parameters. Acta Geophysica,
 

Zohdy AAR. 1965. The auxiliary point method of electrical sounding interpretation and its relationship to the Dar-Zarrouk parameters. Geophysics, 30: 644−660. DOI:10.1190/1.1439636.

 
Zohdy AAR, Eaton GP, Mabey DR. 1974. Application of surface geophysics to groundwater investigations, US Geology Survey. Technology Water Resource Investigation: 116.
 

Zohdy AAR. 1989. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54: 245−253. DOI:10.1190/1.1442648.

Journal of Groundwater Science and Engineering
Pages 116-132
Cite this article:
Raju BA, Rao PV, Subrahmanyam M. Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India. Journal of Groundwater Science and Engineering, 2023, 11(2): 116-132. https://doi.org/10.26599/JGSE.2023.9280011

689

Views

47

Downloads

2

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 20 October 2022
Accepted: 30 March 2023
Published: 15 June 2023
© 2023 Journal of Groundwater Science and Engineering Editorial Office

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

Return