Abstract
This experimental study aimed to investigate the impact of water depth, inlet water temperature, and fins on the productivity of a pyramid solar still in producing distilled water. The experiment was conducted in three parts, where the first part explored the variation in water depth from 1 cm to 5 cm, the second part evaluated the effect of increasing inlet water temperature from 30°C to 50°C, and the third part added fins at the bottom of the still at a specific inlet water depth. Results showed that basin depth had a significant impact on the still’s production, with a maximum variation of 40.6% observed when the water level was changed from 1 cm to 5 cm. The daily freshwater production from the pyramid solar still ranged from 3.41 kg/m2 for a water depth of 1 cm to 2.02 kg/m2 for a depth of 5 cm. Adding fins at the bottom of the pyramid solar still led to a 7.5% increase in productivity, while adjusting the inlet water temperature from 30°C to 40°C and 50°C resulted in a 15.3% and 21.2% increase, respectively. These findings highlighted the essential factors that can influence the productivity of pyramid solar stills and can be valuable in designing and operating efficient water desalination and purification technologies.