AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia

Temesgen Mekuriaw Manderso1( )Yitbarek Andualem Mekonnen1Tadege Aragaw Worku1
Department of Hydraulic and Water Resources Engineering, Debre Tabor University, Debre Tabor Ethiopia
Show Author Information

Abstract

The hydrogeological situation of the study area requires the identification of groundwater potential. Remote sensing and satellite data have proven to be reliable tools for understanding various factors that affect groundwater occurrence and movement. This study employed weighted overlay analysis based on satellite imagery and secondary data to create a thematic map for characterizing groundwater potentials in the study area located within Abbay Basin, Ethiopia. Remote sensing (RS) and GIS-based Fuzzy-Analytical Hierarchy Process methods were utilized to classify groundwater potential (GWP) zones into five categories: Very good, good, moderate, poor, and very poor. The central and eastern parts of the study area were identified as having high (33.186%) and very high (2.351%) groundwater potentials, while the western part exhibited poor and very poor potential areas. The groundwater potential map delineated higher and moderate potentials, suitable for installing shallow and production bores. This research demonstrates the effectiveness of RS and GIS techniques for delineating groundwater potential zones, which can aid in the planning and management of groundwater resources. The research findings have the potential to contribute to the formulation of improved groundwater management programs in the study area.

References

 

Abdalla F, Moubark K, Abdelkareem M. 2020. Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt. Journal of Taibah University for Science. DOI:10.1080/16583655.2020.1822646.

 

Abudeif AM, Abdel Moneim AA, Farrag AF. 2015. Multicriteria decision analysis based on analytic hierarchy process in GIS environment for siting nuclear power plant in Egypt. Annals of Nuclear Energy, 75: 682−692. DOI:10.1016/j.anucene.2014.09.024.

 

Adeyeye OA, Ikpokonte EA, Arabi SA. 2019. GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. Egyptian Journal of Remote Sensing and Space Science, 22(2): 175−181. DOI:10.1016/j.ejrs.2018.04.003.

 

Ajay Kumar V, Mondal NC, Ahmed S. 2020. Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. Journal of the Indian Society of Remote Sensing, 48(3): 497−511. DOI:10.1007/s12524-019-01086-3.

 

Allafta H, Opp C Patra S. 2021. Identification of groundwater potential zones using remote sensing and GIS techniques : A case study of the Shatt Al-Arab Basin. Remote Sensing, 13(1): 112. DOI:10.3390/rs13010112.

 

Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9(1): 1−17. DOI:10.1038/s41598-019-38567-x.

 

Arya S, Subramani T, Karunanidhi D. 2020. Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environmental Earth Sciences, 79(5): 102. DOI:10.1007/s12665-020-8832-9.

 

Atmaja RRS, Putra DPE, Setijadji LD. 2019. Delineation of groundwater potential zones using remote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia. Sixth Geoinformation Science Symposium, 192-202. DOI:10.1117/12.2548473.

 

Berhanu KG, Hatiye SD. 2020. Identification of groundwater potential zones using proxy sata: Case study of Megech Watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28(February): 100676. DOI:10.1016/j.ejrh.2020.100676.

 

Biswas S, Mukhopadhyay BP, Bera A. 2020. Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79(12): 302. DOI:10.1007/s12665-020-09053-9.

 

Das B, Pal SC, Malik S, et al. 2019. Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 3(3): 223−237. DOI:10.1080/24749508.2018.1555740.

 

Das S, Pardeshi SD. 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: A study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7): 1−16. DOI:10.1007/s13201-018-0848-x.

 

Deepa S, Venkateswaran S, Ayyandurai R, et al. 2016. Groundwater recharge potential zones mapping in upper Manimuktha Sub Basin Vellar River Tamil Nadu India using GIS and remote sensing techniques. Modeling Earth Systems and Environment, 2(3): 1−13. DOI:10.1007/s40808-016-0192-9.

 

Duan HJ, Deng ZD, Deng FF, et al. 2016. Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Mathematical Problems in Engineering, 2016: 1−12. DOI:10.1155/2016/2064575.

 

Ettazarini S, El Jakani M. 2020. Mapping of groundwater potentiality in fractured aquifers using remote sensing and GIS techniques: The case of Tafraoute region, Morocco. Environmental Earth Sciences, 79(5): 105. DOI:10.1007/s12665-020-8848-1.

 

Fildes SG, Clark IF, Somaratne NM, et al. 2020. Mapping groundwater potential zones using remote sensing and geographical information systems in a fractured rock setting, Southern Flinders Ranges, South Australia. Journal of Earth System Science, 129(1): 160. DOI:10.1007/s12040-020-01420-1.

 

Gelagay HS, Minale AS. 2016. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2): 126−136. DOI:10.1016/j.iswcr.2016.01.002.

 

Hammouri N, El-naqa A, Barakat M. 2012. An integrated approach to groundwater exploration using remote sensing and geographic information system. Journal of Water Resource and Proteciton, 4(9): 717−724. DOI:10.4236/jwarp.2012.49081.

 

Haque SM, Kannaujiya S, Taloor AK, et al. 2020. Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater for Sustainable Development, 10: 100337. DOI:10.1016/j.gsd.2020.100337.

 

Ikegwuonu ES, Balogun DO, Agunloye O, et al. 2021. Geospatial assessment of groundwater potential in Jos south local government area of Plateau State, Nigeria. International Jouranl of Engineering Research and Technology, 10(3): 27−38.

 

Jabbar FK, Grote K, Tucker RE. 2019. A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process ( AHP ) methodology : A case study in Eagle Creek Watershed, USA. Environmental Science and Pollution Research, 26: 31981−31997. DOI:10.1007/s11356-019-06355-9.

 

Janarthanan G, Thirukumaran V. 2020. Mapping of groundwater potential zones in Pulampatti Watershed, Dharmapuri District – a geospatial approach. Indian Journal of Natural Sciences, 12(66): 1−9.

 

Kassahun N, Mohamed M. 2018. Groundwater potential assessment and characterization of Genale-Dawa River Basin. Open Journal of Modern Hydrology, 08(04): 126−144. DOI:10.4236/ojmh.2018.84010.

 

Kavidha R, Elangovan K. 2012. Assessment of groundwater potential zones in erode district, tamil nadu, by using gis techniques. Pollution Research, 31(2): 161−167.

 

Kindie AT, Enku T, Moges MA. 2019. Spatial analysis of groundwater potential using GIS based multi criteria dcision analysis method in Lake Tana Basin, Ethiopia (Vol. 2). International Conference on Advances of Science and Technology. Cham: Springer, 2019: 439−456. DOI:10.1007/978-3-030-15357-1_37.

 

Pande CB, Moharir KN, Panneerselvam B, et al. 2021. Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Applied Water Science, 11(12): 1−20. DOI:10.1007/s13201-021-01522-1.

 

Province B, Kaewdum N, Chotpantarat S. 2021. Mapping potential zones for groundwater recharge using a GIS technique in the Lower Khwae Hanuman Sub-Basin area. Prachin, 9: 1−16. DOI:10.3389/feart.2021.717313.

 

Rajasekhar M, Sudarsana Raju G, Sreenivasulu Y, et al. 2019. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch, 2: 97−108. DOI:10.1016/j.hydres.2019.11.006.

 

Saha A, Patil M, Karwariya S, et al. 2018. Identification of potential sites for water harvesting structures using geospatial techniques and multi-criteria decision analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XLII-5: 329−334. DOI:10.5194/ISPRS-ARCHIVES-XLII-5-329-2018.

 

Saranya T, Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2): 1105−1122. DOI:10.1007/s40808-020-00744-7.

 

Savita RS, Mittal HK, Satishkumar U, et al. 2018. Delineation of groundwater potential zones using remote sensing and GIS techniques in Kanakanala Reservoir Subwatershed, Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 7(1): 273−288. DOI:10.20546/ijcmas.2018.701.030.

 

Shadeed SM, Judeh TG, Almasri MN. 2019. Developing GIS-based water poverty and rainwater harvesting suitability maps for domestic use in the Dead Sea region(West Bank, Palestine). Hydrogeology and Earth System Science, 23(3): 1581−1592. DOI:10.5194/hess-23-1581-2019.

 

Shao ZF, Huq ME, Cai BW, et al. 2020. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environmental Modelling and Software, 134: 104868. DOI:10.1016/j.envsoft.2020.104868.

 

Sivakumar V, Vinay LY, Reddy K. 2019. Identification of groundwater potential zones using gis and remote sensing. International Journal of Pure and Applied Mathematics, 119(17): 3195-3210.

 

Suryabhagavan K. 2017. Application of remote sensing and GIS for groundwater potential zones identification in Bata river basin, Himachal Pradesh, India. Journal of Geomatics, 11(1): 66−76.

 

Takorabt HZS. et al. 2018. Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM + data, case of the Chott El Gharbi Basin (western Algeria). Arabian Journal of Geosciences, 11(4): 76. DOI:10.1007/s12517-018-3412-y.

 

Teja KS, Singh D. 2019. Identification of groundwater potential zones using remote sensing and GIS, case study: Mangalagiri mandal. International Journal of Recent Technology and Engineering, 7(6): 860−864.

 

Thapa R, Gupta S, Guin S, et al. 2018. Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: A comparative approach between vulnerability models. Water Science, 32(1): 44−66. DOI:10.1016/j.wsj.2018.02.003.

 

Yeh HF, Cheng YS, Lin HI, et al. 2016. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1): 33−43. DOI:10.1016/j.serj.2015.09.005.

Journal of Groundwater Science and Engineering
Pages 221-236
Cite this article:
Manderso TM, Mekonnen YA, Worku TA. Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 2023, 11(3): 221-236. https://doi.org/10.26599/JGSE.2023.9280019

735

Views

107

Downloads

1

Crossref

0

Web of Science

1

Scopus

Altmetrics

Received: 11 September 2022
Accepted: 05 June 2023
Published: 15 September 2023
2305-7068/© 2023 Journal of Groundwater Science and Engineering Editorial Office

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

Return