Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To investigate the presence of metal elements and assess their health risk for the populace in the Nandong Underground River Basin (NURB), we conducted an analysis of eleven common heavy metals in the water body. A Health risk assessment (HRA) model was employed to analyze 84 water samples from the NURB. The detection results revealed the following order of heavy metals concentrations: Fe > Al > Mn > Zn > As > Cd > Pb > Cr > Ni > Cu > Hg. Correlation analysis indicated a certain similarity in material source and migration transformation among these eleven metal elements. Our study identified that the health risks for local residents exposed to metal elements in the water of NURB primarily stem from carcinogenic risk (10−6–10−4 a−1) through the drinking water pathway. Moreover, the health risk of heavy metal exposure for children through drinking water was notably higher than for adults. The maximum health risks of Cr in both underground and surface water exceeded the recommendation standard (5.0×10−5 a−1) from ICRP, surpassing the values recommended by the Swedish Environmental Protection Agency, the Dutch Ministry of Construction and Environment and the British Royal Society (5.0×10−6 a−1). The results of the health risk assessment indicate that Cr in the water of NURB is the primary source of carcinogenic risk for local residents, followed by Cd and As. Consequently, it is imperative to control these three carcinogenic metals when the water was used as drinking water resource.
Adewoyin OO, Kayode OT, Omeje O, et al. 2019. Risk assessment of heavy metal and trace elements contamination in groundwater in some parts of Ogun state. Cogent Engineering, 6(1): 1632555. DOI:10.1080/23311916.2019.1632555.
Ameh EG. 2019. Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria. International Journal of Coal Science & Technology, 6(2): 260−273. DOI:10.1007/s40789-019-0247-4.
Ba JJ, Gao FF, Peng C, et al. 2022. Characteristics of nitrate and heavy metals pollution in Huixian Wetland and its health risk assessment. Alexandria Engineering Journal, 61(11): 9031−9042. DOI:10.1016/j.aej.2022.02.045.
Bilal B, Tatiana VC, Kirill AV, et al. 2021. The heavy metal pollution in groundwater, surface and spring water in phosphorite mining area of Tebessa (Aleria). Environmental nanotechnology, Monitoring & Management, 16: 1−10. DOI:10.1016/j.ennm.2021.100591.
Jiang Y, Wu Y, Groves C, et al. 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109: 49−61. DOI:10.1016/j.jconhyd.2009.08.001.
Lan FN, Zhao Y, Jiang ZC, et al. 2022. Exploring long-term datasets of land use, economy, and demography variations in karst wetland areas to detect possible microclimate changes. Land Degradation & Development, 33: 2743−2756. DOI:10.1002/ldr.4302.
Li J, Zou SZ, Liang YP, et al. 2020a. Metal distributions and human health risk assessments on waters in Huixian Karst wetland, China. Environmental Science, 41(11): 4948−4957. (in Chinese) DOI:10.13227/j.hjkx.202003212.
Lin JH, Yan Y, Yang GH. 2020. Distribution characteristics of mercury in biofilm and sediment of a typical mercury contaminated river. Earth Environment, 48(3): 341−347. (in Chinese) DOI:10.14050/j.cnki.1672-9250.2020.48.041.
Liu P, Jiang ZC, Li YQ, et al. 2023. Quantitative study on improved budyko-based separation of climate and ecological restoration of runoff and sediment yield in Nandong underground river system. Water, 15: 1263. DOI:10.3390/w15071263.
Mashaal N, Akagi T, Ishibashi. 2020. Hydrochemical and isotopic study of groundwater in Wadi El-Natrun, Western Desert, Egypt: Implication for salinization processes. Journal of African Earth Sciences, 172: 104011. DOI:10.1016/j.jafrearsci.2020.104011.
Susan, Tumwebaze B, Abrabam, et al. 2017. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere Environmental Toxicology & Risk, 169: 281−287.
Yang SR, Huang QH, Huang QR, et al. 2023. Study on human heavy metal exposure in Gejiu tin mining area, Yunan. Yunnan Geology, 42(1): 106−113. (in Chinese)
Zeng M, Guo R, Yang SM, et al. 2019. Heavy metal pollution and ecological risk assessment in agricultural production areas: Taking Gejiu City of Yunnan Province as an example. Soils and Crops, 8(1): 85−92. (in Chinese) DOI:10.11689/j.issn.2095-2961.2019.01.010.
Zhang Y, Guo CQ, Sun PA. 2019. Groundwater health risk assessment based on spatial analysis in the Qiaomaidi watershed. China Environmental Science, 39(11): 4762−4768. (in Chinese) DOI:10.19674/j.cnki.issn1000-6923.2019.0555.
Zhao Y, Li YQ, Qin XM, et al. 2017. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage. Carsologica Sinica, 36(2): 226−233. (in Chinese) DOI:10.11932/karst20170210.
Zhou JM, Jiang ZC, Xu GL, et al. 2019. Distribution and health risk assessment of metals in groundwater around iron mine. China Environmental Science, 39(5): 1934−1944. (in Chinese) DOI:10.19674/j.cnki.issn1000-6923.2019.0230.
Zhou QM, Jiang ZC, Xu GL, et al. 2019. Water quality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo. Environmental Science, 40(6): 2675−2685. (in Chinese) DOI:10.13227/j.hjkx.201810234.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)