Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin (Northeastern Algeria). The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index (WQI). A total of 24 water points (wells and borewells) evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater. The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO3 –Na, with the dominant major ions were found in the order of Na+ > Ca2+ > Mg2+ for cations, and Cl− > SO42− > HCO3– > NO3− for anions. Results suggest that weathering, dissolution of carbonate, sulfate, salt rocks, and anthropogenic activities were the major contributors to ion content in the groundwater. The Water Quality Index (WQI) was calculated to assess the water quality of potable water. Approximately 50% of the sampled sites exhibited good water quality. However, the study highlights significant NO3 contamination in the study area, with 50% of samples exceeding permissible limits. Therefore, effective treatment measures are crucial for the safe consumption of groundwater.
Adimalla N, Qian H. 2019. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicology and Environmental Safety, 176: 153−161. DOI:10.1016/j.ecoenv.2019.03.066.
Allia Z, Lalaoui M, Chebbah M. 2022. Hydrochemical assessment for the suitability of drinking and irrigation use of surface water in Grouz Dam Basin, Northeast Algeria. Sustainable Water Resources Management, 8(3): 88. DOI:10.1007/s40899-022-00663-8.
Ameen HA. 2019. Spring water quality assessment using water quality index in villages of Barwari Bala, Duhok, Kurdistan Region, Iraq. Applied Water Science, 9(8): 176. DOI:10.1007/s13201-019-1080-z.
Bouderbala A, Gharbi BY. 2017. Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the Upper Cheliff plain, Algeria. Environmental Earth Sciences, 76(21): 744. DOI:10.1007/s12665-017-7067-x.
Campo M, Esteller MV, Exposito J. et al. 2014. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186: 2979−2999. DOI:10.1007/s10661-013-3595-3.
Chebbah M, Allia Z. 2014. Geochemistry and hydrogeochemical process of groundwater in arid region: A case study of the water table in the Souf Valley (Low Septentrional Sahara, Algeria). African Journal of Geo-Science Research, 2(3): 23−30.
Fakharian K, Narany TS. 2016. Multidisciplinary approach to evaluate groundwater salinity in Saveh Plain, Iran. Environmental Earth Sciences, 75(7): 624. DOI:10.1007/s12665-015-5104-1..
Ganiyu SA, Badmus BS, Olurin OT, et al. 2018. Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria. Applied Water Science, 8(1): 35. DOI:10.1007/s13201-018-0677-y.
Ghouili N, Hamzaoui-Azaza F, Zammouri M, et al. 2018. Groundwater quality assessment of the Takelsa phreatic aquifer (Northeastern Tunisia) using geochemical and statistical methods: Implications for aquifer management and end-users. Environmental Science and Pollution Research, 25(36): 36306−36327. DOI:10.1007/s11356-018-3473-1.
Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI:10.1126/science.170.3962.1088.
Hassen I, Hamzaoui-Azaza F, Bouhlila R. 2016. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: Case of Oum Ali-Thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment, 188(3): 135. DOI:10.1007/s10661-016-5124-7.
Kachroud M, Trolard F, Kefi M, et al. 2019. Water quality indices: Challenges and application limits in the literature. Water, 11(2): 361. DOI:10.3390/w1020361.
Khan A, Qureshi FR. 2018. Groundwater quality assessment through water quality index (WQI) in New Karachi Town, Karachi, Pakistan. Asian Journal Water Environment Pollution, 15(1): 41−46. DOI:10.3233/AJW-180004.
Kundu A, Kanti Nag, S. 2015. Delineation of groundwater quality for drinking and irrigation purposes: A case study of chhatna block, Bankura District, West Bengal. International Journal of Water Resources Development, 3(1): 5−23.
Lalaoui M, Allia Z, Chebbah M. 2020. Hydrogeochemical processes and suitability assessment of surface water in the Grouz Dam Basin, northeast Algeria. Journal of Fundamental and Applied Sciences, 12(3): 1452−1474. DOI:10.4314/jfas.v12i3.29.
Liu F, Song X, Yang L, et al. 2015. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake Basin, Ordos energy base, Northwestern China. Hydrology and Earth System Sciences, 19(1): 551−565. DOI:10.5194/hess-19-551-2015.
Liu JT, Feng JG, Gao ZJ, et al. 2019. Hydrochemical characteristics and quality assessment of groundwater for drinking and irrigation purposes in the Futuan River Basin, China. Arabian Journal of Geosciences, 12(18): 560. DOI:10.1007/s12517-019-4732-2.
Long DT, Pearson AL, Voice TC, et al. 2018. Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico. Applied Geochemistry, 98(11): 265−277. DOI:10.1016/j.apgeochem.2018.09.020.
Marco R, Tullia B, Elisa S. et al. 2019. The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system: The Oglio River Basin, Po Plain, northern Italy. Science of the Total Environment, 672: 342−356. DOI:10.1016/j.scitotenv.2019.03.427.
Perera TANT, Herath HMMSD, Piyadasa RUK, et al. 2022. Spatial and physicochemical assessment of groundwater quality in the urban coastal region of Sri Lanka. Environmental Science and Pollution Research, 29(11): 16250−16264. DOI:10.1007/s11356-021-16911-x.
Qasemi M, Farhang M, Biglari H, et al. 2018. Health risk assessments due to nitrate levels in drinking water in villages of Azadshahr, northeastern Iran. Environmental Earth Sciences, 77(23): 782. DOI:10.1007/s12665-018-7973-6.
RadFard M, Seif M, Ghazizadeh Hashemi AH, et al. 2019. Protocol for the estimation of drinking water quality index (DWQI) in water resources: Artificial neural network (ANFIS) and Arc-Gis. MethodsX, 6: 1021−1029. DOI:10.1016/j.mex.2019.04.027.
Selvakumar S, Chandrasekar N, Kumar G. 2017. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17: 26−33. DOI:10.1016/j.wri.2017.02.002.
Shah KA, Joshi GS. 2017. Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7(3): 1349−1358. DOI:10.1007/s13201-015-0318-7.
Tyagi S, Sharma B, Singh P, et al. 2020. Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3): 34−38. DOI:10.12691/ajwr-1-3-3.
Yang L, Zhang YP, Wen XR, et al. 2020. Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China. Journal of Groundwater Science and Engineering, 8(3): 298−304. DOI:10.19637/j.cnki.2305-7068.2020.03.010.
Yang QC, Li ZJ, Ma HY, et al. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos Basin, China. Environmental Pollution, 218: 879−888. DOI:10.1016/j.envpol.2016.08.017.
Zhang QY, Xu PP, Qian H. 2020. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Exposure and Health, 12(3): 487−500. DOI:10.1007/s12403-020-00345-w.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)