AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (809.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Impact of water table on hierarchically nested groundwater flow system

Jun Zhang1( )Rong-zhe Hou1Kun Yu1Jia-qiu Dong1Li-he Yin1
Key Laboratory of Groundwater and Ecology in Arid and Semi-arid Areas, Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
Show Author Information

Abstract

Water table configuration gives rise to hierarchically nested groundwater flow systems. However, there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems. Moreover, it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale. Based on two ideal two-dimensional cross-section analytical models, this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors: Topography, geology and climate. Two criteria, C1 and C2, are utilized to address issues at different scales ranging from basin to local: (i) the influence of various factors on water table configuration; and (ii) the influence of water table on groundwater flow pattern. Then, the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion. The application of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for preliminarily determining the characteristics of water table configuration and its impact on flow systems. The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography, geology, and climate on groundwater flow patterns.

References

 
Batelaan O, De Smedt F, Triest L. 2003. Regional groundwater discharge: Phreatophyte mapping, groundwater modelling and impact analysis of land-use change. Journal of Hydrology, 275: 86-108.
 

Condon LE, Maxwell RM. 2015. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resources Research, 51(8): 6602−6621. DOI:10.1002/2014wr016774.

 
Cardenas MB. 2007. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophysical Research Letters, 34(5): L05403.
 

Chen SM, Liu FT, Zhang Z, et al. 2021. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geology, 4(3): 455−462. DOI:10.31035/cg2021060.

 

Dai X, Xie Y, Simmons CT, et al. 2021. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling. Journal of Hydrology, 594: 125950. DOI:10.1016/j.jhydrol.2020.125950.

 

Desbarats AJ, Logan CE, Hinton MJ, et al. 2002. On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology, 255(1): 25−38. DOI:10.1016/s0022-1694(01)00504-2.

 
Dupuit J. 1863. Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables avec des considerations relatives au regime des grandes eaux, au debouche a leur donner et a la marche des alluvions dans les rivieres a fond mobile. Dunod, éditeur. (in French)
 
Engelen GB. 1996. Hydrological systems analysis: Methods and applications, ed. F. H. Kloosterman. Dordrecht: Kluwer Academic.
 
Engelen GB, Jones GP. 1986. Developments in the analysis of groundwater flow systems. Iahs. Aghion, Philippe, Burgess, Robin and Mayer, C (Dis.), (1993) Fin.
 
Fan Y, Miguez-Macho G, Weaver CP, et al. 2007. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. Journal of Geophysical Research Atmospheres, 112(D10).
 

Forster C, Smith L. 1988. Groundwater flow systems in mountainous terrain: 1. Numerical modeling technique. Water Resources Research, 24(7): 999−1010. DOI:10.1029/WR024i007p00999.

 
Freeze RA, Cherry JA. 1979. Groundwater. Englewood Cliffs: Prentice-Hall.
 

Freeze RA, Witherspoon PA. 1967. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation. Water Resources Research, 3(2): 623−634. DOI:10.1029/WR003i002p00623.

 

Goderniaux P, Davy P, Bresciani E, et al. 2013. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resources Research, 49(4): 2274−2286. DOI:10.1002/wrcr.20186.

 

Gleeson T, Marklund L, Smith L, et al. 2011. Classifying the water table at regional to continental scales. Geophysical Research Letters, 38(5): L05401. DOI:10.1029/2010gl046427.

 

Gleeson T, Manning AH. 2008. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 44(10): 297−297. DOI:10.1029/2008WR006848.

 

Garven G. 1995. Continental-scale groundwater flow and geologic processes. Annual Review of Earth and Planetary Sciences, 23(1): 89−117. DOI:10.1146/annurev.ea.23.050195.000513.

 

Hou GC, Liang YP, Su XS, et al. 2010. Groundwater systems and resources in the Ordos Basin, China. Acta Geologica Sinica - English Edition, 82(005): 1061−1069. DOI:10.1111/j.1755-6724.2008.tb00664.x.

 
Haitjema HM, Mitchell-Bruker S. 2005. Are water tables a subdued replica of the topography? Ground Water, 43(6): 781-786.
 

Jiang XW, Sun ZC, Zhao KY, et al. 2017. A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations. Journal of Hydrology, 548: 498−507. DOI:10.1016/j.jhydrol.2017.03.026.

 

Jiang XW, Wan L, Wang JZ, et al. 2014. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophysical Research Letters, 41(8): 2812−2819. DOI:10.1002/2014GL059579.

 

Jiang XW, Wan L, Ge SM, et al. 2012. A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resources Research, 48(12): W12502. DOI:10.1029/2012wr012509.

 

Jiang XW, Wang XS, Wan L, et al. 2011. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resources Research, 47(1): 128−139. DOI:10.1029/2010WR009346.

 

Liu J, Cheng YP, Zhang FE, et al. 2023. Research hotspots and trends of groundwater and ecology studies: Based on a bibliometric approach. Journal of Groundwater Science and Engineering, 11(1): 20−36. DOI:10.26599/JGSE.2023.9280003.

 

Lévesque Y, Romain C, Julien W. 2023. Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model. Hydrogeology Journal, 31(2): 351−370. DOI:10.1007/s10040-023-02591-z.

 

Liang X, Quan D, Jin M, et al. 2013. Numerical simulation of groundwater flow patterns using flux as upper boundary. Hydrological Processes, 27(24): 3475−3483. DOI:10.1002/hyp.9477.

 

Liang X, Liu Y, Jin M, et al. 2010. Direct observation of complex Tóthian groundwater flow systems in the laboratory. Hydrological Processes, 24(24): 3568−3573. DOI:10.1002/hyp.7758.

 
Ma Z, Wang W, Zhang Z, et al. 2024. River–groundwater interactions in the arid and semiarid areas of northwestern China. Hydrogeology Journal, 32: 37-57.
 

Marchetti ZY, Carrillo Rivera JJ. 2014. Tracing groundwater discharge in the floodplain of the parana river, Argentina: Implications for its biological communities. River Research and Applications, 30(2): 166−179. DOI:10.1002/rra.2629.

 

Maxwell RM, Kollet SJ. 2008. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geoscience, 1(10): 665−669. DOI:10.1038/ngeo315.

 
Muskat M. 1938. The flow of homogeneous fluids through porous media. Soil Science, 46(2): 169.
 

Ning TS, Zhou S, Chang FY, et al. 2019. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agricultural and Forest Meteorology, 275: 59−68. DOI:10.1016/j.agrformet.2019.05.001.

 
Provost AM, Voss CI. 2001. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques. Sweden. SKI Report, 1: 44.
 

Qu S, Wang C, Yang N, et al. 2023. Large-scale surface water-groundwater origins and connectivity in the Ordos Basin, China: Insight from hydrogen and oxygen isotopes. Environmental Research, 236: 116837. DOI:10.1016/j.envres.2023.116837.

 

Robinson NI, Love AJ. 2013. Hidden channels of groundwater flow in Tóthian drainage basins. Advances in Water Resources, 62(part A): 71−78. DOI:10.1016/j.advwatres.2013.10.004.

 

Tóth J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeology Journal, 7(1): 1−14. DOI:10.1007/s100400050176.

 

Tóth J, Sheng G. 1996. Enhancing safety of nuclear waste disposal by exploiting regional groundwater flow: The recharge area concept. Hydrogeology Journal, 4(4): 4−25. DOI:10.1007/s100400050252.

 
Tóth J, Back W, Rosenshein JS, et al. 1988. Ground water and hydrocarbon migration. Hydrogeology, O-2. Geological Society of America.
 

Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research (1896-1977), 68(16): 4795−4812. DOI:10.1029/JZ068i016p04795.

 

Wang XS, Wan L, Jiang XW, et al. 2017. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 108: 139−156. DOI:10.1016/j.advwatres.2017.07.016.

 
Wang JZ, Wörman A, Bresciani E, et al. 2016a. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems. Journal of Hydrology, 47−58.
 

Wang JZ, Jiang XW, Wan L, et al. 2016b. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins. Water Resources Research, 51(10): 8658−8667. DOI:10.1002/2015WR017104.

 

Wang H, Jiang XW, Wan L, et al. 2015. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 527: 433−441. DOI:10.1016/j. jhydrol. 2015.04. 063.

 

Welch LA, Allen DM. 2012. Consistency of groundwater flow patterns in mountainous topography: Implications for valley bottom water replenishment and for defining groundwater flow boundaries. Water Resources Research, 48(5): W05526.1−W05526.16. DOI:10.1029/2011WR010901.

 

Wörman A, Packman AI, Marklund L, et al. 2006. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophysical Research Letters, 33(7): 359−377. DOI:10.1029/2006GL025747.

 
Winter TC. 1976. Numerical simulation analysis of the interaction of lakes and ground water. US Geological Suru. Prof. Paper, 1001.
 

Yin LH, Hou GC, Tao ZP, et al. 2010. Origin and recharge estimates of groundwater in the ordos plateau, People's Republic of China. Environmental Earth Sciences, 60(8): 1731−1738. DOI:10.1007/s12665-009-0310-3.

 

Zhang J, Wang XS, Yin LH, et al. 2021. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems. Geophysical Research Letters, 48(16): 1−10. DOI:10.1029/2020GL092337.

 

Zhao KY, Jiang XW, Wang XS, et al. 2021. Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China. Hydrogeology Journal, 29(2): 567−577. DOI:10.1007/s10040-020-02208-9.

 

Zhao W, Lin YZ, Zhou PP, et al. 2021. Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4(3): 377−388. DOI:10.31035/cg2021053.

 

Zhang J, Wang WK. Wang XY, et al. 2019. Seasonal variation in the precipitation recharge coefficient for the Ordos Plateau, Northwest China. Hydrogeology Journal, 27(2): 801−813. DOI:10.1007/s10040-018-1891-2.

 

Zech A, Zehner B, Kolditz O, et al. 2015. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin. Journal of Hydrology, 532: 90−101. DOI:10.1016/j.jhydrol.2015.11.030.

Journal of Groundwater Science and Engineering
Pages 119-131
Cite this article:
Zhang J, Hou R-z, Yu K, et al. Impact of water table on hierarchically nested groundwater flow system. Journal of Groundwater Science and Engineering, 2024, 12(2): 119-131. https://doi.org/10.26599/JGSE.2024.9280010

526

Views

63

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 13 October 2023
Accepted: 12 April 2024
Published: 10 June 2024
2305-7068/© 2024 Journal of Groundwater Science and Engineering Editorial Office

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

Return