Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Water table configuration gives rise to hierarchically nested groundwater flow systems. However, there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems. Moreover, it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale. Based on two ideal two-dimensional cross-section analytical models, this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors: Topography, geology and climate. Two criteria, C1 and C2, are utilized to address issues at different scales ranging from basin to local: (i) the influence of various factors on water table configuration; and (ii) the influence of water table on groundwater flow pattern. Then, the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion. The application of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for preliminarily determining the characteristics of water table configuration and its impact on flow systems. The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography, geology, and climate on groundwater flow patterns.
Condon LE, Maxwell RM. 2015. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resources Research, 51(8): 6602−6621. DOI:10.1002/2014wr016774.
Chen SM, Liu FT, Zhang Z, et al. 2021. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geology, 4(3): 455−462. DOI:10.31035/cg2021060.
Dai X, Xie Y, Simmons CT, et al. 2021. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling. Journal of Hydrology, 594: 125950. DOI:10.1016/j.jhydrol.2020.125950.
Desbarats AJ, Logan CE, Hinton MJ, et al. 2002. On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology, 255(1): 25−38. DOI:10.1016/s0022-1694(01)00504-2.
Forster C, Smith L. 1988. Groundwater flow systems in mountainous terrain: 1. Numerical modeling technique. Water Resources Research, 24(7): 999−1010. DOI:10.1029/WR024i007p00999.
Freeze RA, Witherspoon PA. 1967. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation. Water Resources Research, 3(2): 623−634. DOI:10.1029/WR003i002p00623.
Goderniaux P, Davy P, Bresciani E, et al. 2013. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resources Research, 49(4): 2274−2286. DOI:10.1002/wrcr.20186.
Gleeson T, Marklund L, Smith L, et al. 2011. Classifying the water table at regional to continental scales. Geophysical Research Letters, 38(5): L05401. DOI:10.1029/2010gl046427.
Gleeson T, Manning AH. 2008. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 44(10): 297−297. DOI:10.1029/2008WR006848.
Garven G. 1995. Continental-scale groundwater flow and geologic processes. Annual Review of Earth and Planetary Sciences, 23(1): 89−117. DOI:10.1146/annurev.ea.23.050195.000513.
Hou GC, Liang YP, Su XS, et al. 2010. Groundwater systems and resources in the Ordos Basin, China. Acta Geologica Sinica - English Edition, 82(005): 1061−1069. DOI:10.1111/j.1755-6724.2008.tb00664.x.
Jiang XW, Sun ZC, Zhao KY, et al. 2017. A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations. Journal of Hydrology, 548: 498−507. DOI:10.1016/j.jhydrol.2017.03.026.
Jiang XW, Wan L, Wang JZ, et al. 2014. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophysical Research Letters, 41(8): 2812−2819. DOI:10.1002/2014GL059579.
Jiang XW, Wan L, Ge SM, et al. 2012. A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resources Research, 48(12): W12502. DOI:10.1029/2012wr012509.
Jiang XW, Wang XS, Wan L, et al. 2011. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resources Research, 47(1): 128−139. DOI:10.1029/2010WR009346.
Liu J, Cheng YP, Zhang FE, et al. 2023. Research hotspots and trends of groundwater and ecology studies: Based on a bibliometric approach. Journal of Groundwater Science and Engineering, 11(1): 20−36. DOI:10.26599/JGSE.2023.9280003.
Lévesque Y, Romain C, Julien W. 2023. Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model. Hydrogeology Journal, 31(2): 351−370. DOI:10.1007/s10040-023-02591-z.
Liang X, Quan D, Jin M, et al. 2013. Numerical simulation of groundwater flow patterns using flux as upper boundary. Hydrological Processes, 27(24): 3475−3483. DOI:10.1002/hyp.9477.
Liang X, Liu Y, Jin M, et al. 2010. Direct observation of complex Tóthian groundwater flow systems in the laboratory. Hydrological Processes, 24(24): 3568−3573. DOI:10.1002/hyp.7758.
Marchetti ZY, Carrillo Rivera JJ. 2014. Tracing groundwater discharge in the floodplain of the parana river, Argentina: Implications for its biological communities. River Research and Applications, 30(2): 166−179. DOI:10.1002/rra.2629.
Maxwell RM, Kollet SJ. 2008. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geoscience, 1(10): 665−669. DOI:10.1038/ngeo315.
Ning TS, Zhou S, Chang FY, et al. 2019. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agricultural and Forest Meteorology, 275: 59−68. DOI:10.1016/j.agrformet.2019.05.001.
Qu S, Wang C, Yang N, et al. 2023. Large-scale surface water-groundwater origins and connectivity in the Ordos Basin, China: Insight from hydrogen and oxygen isotopes. Environmental Research, 236: 116837. DOI:10.1016/j.envres.2023.116837.
Robinson NI, Love AJ. 2013. Hidden channels of groundwater flow in Tóthian drainage basins. Advances in Water Resources, 62(part A): 71−78. DOI:10.1016/j.advwatres.2013.10.004.
Tóth J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeology Journal, 7(1): 1−14. DOI:10.1007/s100400050176.
Tóth J, Sheng G. 1996. Enhancing safety of nuclear waste disposal by exploiting regional groundwater flow: The recharge area concept. Hydrogeology Journal, 4(4): 4−25. DOI:10.1007/s100400050252.
Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research (1896-1977), 68(16): 4795−4812. DOI:10.1029/JZ068i016p04795.
Wang XS, Wan L, Jiang XW, et al. 2017. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 108: 139−156. DOI:10.1016/j.advwatres.2017.07.016.
Wang JZ, Jiang XW, Wan L, et al. 2016b. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins. Water Resources Research, 51(10): 8658−8667. DOI:10.1002/2015WR017104.
Wang H, Jiang XW, Wan L, et al. 2015. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 527: 433−441. DOI:10.1016/j. jhydrol. 2015.04. 063.
Welch LA, Allen DM. 2012. Consistency of groundwater flow patterns in mountainous topography: Implications for valley bottom water replenishment and for defining groundwater flow boundaries. Water Resources Research, 48(5): W05526.1−W05526.16. DOI:10.1029/2011WR010901.
Wörman A, Packman AI, Marklund L, et al. 2006. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophysical Research Letters, 33(7): 359−377. DOI:10.1029/2006GL025747.
Yin LH, Hou GC, Tao ZP, et al. 2010. Origin and recharge estimates of groundwater in the ordos plateau, People's Republic of China. Environmental Earth Sciences, 60(8): 1731−1738. DOI:10.1007/s12665-009-0310-3.
Zhang J, Wang XS, Yin LH, et al. 2021. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems. Geophysical Research Letters, 48(16): 1−10. DOI:10.1029/2020GL092337.
Zhao KY, Jiang XW, Wang XS, et al. 2021. Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China. Hydrogeology Journal, 29(2): 567−577. DOI:10.1007/s10040-020-02208-9.
Zhao W, Lin YZ, Zhou PP, et al. 2021. Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4(3): 377−388. DOI:10.31035/cg2021053.
Zhang J, Wang WK. Wang XY, et al. 2019. Seasonal variation in the precipitation recharge coefficient for the Ordos Plateau, Northwest China. Hydrogeology Journal, 27(2): 801−813. DOI:10.1007/s10040-018-1891-2.
Zech A, Zehner B, Kolditz O, et al. 2015. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin. Journal of Hydrology, 532: 90−101. DOI:10.1016/j.jhydrol.2015.11.030.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)