Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions, which is crucial for the sustainable geothermal energy management. With advancing exploitation of geothermal resources deepens, precise understanding of this mechanism becomes paramount for devising effective reinjection strategies, optimizing reservoir utilization, and bolstering the economic viability of geothermal energy development. The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions, and analyzes key factors influencing this evolution. It evaluates existing research methods, highlighting their strengths and limitations. The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale, alongside the need for enhanced accuracy in field test results, particularly regarding computational efficiency of fractured thermal reservoir models under multi-well reinjection conditions. To address these shortcomings, the study proposes conducting large-scale rock seepage and heat transfer experiments, coupled with multi-tracer techniques for field testing, aimed at optimizing fractured thermal reservoir models' computational efficiency under multi-well reinjection conditions. Additionally, it suggests integrating deep learning methods into research endeavors. These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.
Al-Khoury R, Bonnier PG, Brinkgreve RBJ. 2005. Efficient finite element formulation for geothermal heating systems. Part I: Steady state. International Journal for Numerical Methods in Engineering, 63(7): 988−1013. DOI:10.1002/nme.1313.
Al Khoury R, Bonnier P. 2006. Efficient finite element formulation for geothermal heating systems. Part II: Transient. International journal for numerical methods in engineering, 67(5): 725−745. DOI:10.1002/nme.1662.
Allen A, Milenic D. 2003. Low-enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys. Applied Energy, 74(1): 9−19. DOI:10.1016/S0306-2619(02)00126-5.
Aquilina L, de Dreuzy J-R, Bour O, et al. 2004. Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from injection tests at the Soultz-sous-Forêts geothermal site. Geochimica et Cosmochimica Acta, 68(11): 2405−2415. DOI:10.1016/j.gca.2003.08.023.
Bai B, He Y, Li X, et al. 2016. Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environmental Earth Sciences, 75(22): 1460. DOI:10.1007/s12665-016-6249-2.
Bullivant D, O'sullivan M. 1989. Matching a field tracer test with some simple models. Water Resources Research, 25(8): 1879−1891. DOI:10.1029/WR025i008p01879.
Cao Q, Fang CH, Li Y, et al. 2021. Development status and enlightenment of geothermal reinjection at home and abroad. Oil Drilling & Production Technology, 43(02): 203−211. (in Chinese) DOI:10.13639/j.odpt.2021.02.011.
Cao V, Schaffer M, Taherdangkoo R, et al. 2020. Solute Reactive Tracers for Hydrogeological Applications: A Short Review and Future Prospects. Water, 12(3): 653−674. DOI:10.3390/w12030653.
Chen BG, Song EX, Cheng XH. 2014. Numerical calculation method of discrete fracture network model for seepage heat transfer of two-dimensional fractured rock mass. Chinese Journal of Rock Mechanics and Engineering, 33(01): 43−51. DOI:10.13722/j.cnki.jrme.2014.01.005.
Cheng WQ, Liu JL, Chen HB. 2011. Simulation research on reinjection temperature field of geothermal doublet well. World Geology, 30(03): 486−492. (in Chinese)
Cui HB, Tang JP, Jiang XT. 2018a. Influence of injection and production parameters on EGS thermal reservoir change law. Journal of Liaoning Technical University(Natural Science), 37(06): 871−881. (in Chinese) DOI:10.11956/j.issn.1008-0562.2018.06.003.
Du L, Tang G, Zhan HY, et al. 2021. Seepage-heat transfer characteristics of carbonate acid erosion fractures. Science Technology and Engineering, 21(33): 14333−14344. (in Chinese)
Du L, Zhao L, Qiao Y, et al. 2019. Study on the Influence of Fracture Orientation and Injection Velocity on the Micro Seepage Law of Reinjection Water in Fracture Geothermal Reservoir. Shandong Chemical Industry, 48(20): 139−141+146. (in Chinese) DOI:10.19319/j.cnki.issn.1008-021x.2019.20.052.
Hawkins AJ, Becker MW, Tester JW. 2018. Inert and adsorptive tracer tests for field measurement of flow‐wetted surface area. Water Resources Research, 54(8): 5341−5358. DOI:10.1029/2017wr021910.
Jackson CP, Hoch AR, Todman S. 2000. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium. Water Resources Research, 36(1): 189−202. DOI:10.1029/1999wr900249.
Li TX, Cai YF, Liu YG, et al. 2020. Tracer test and simulation of thermal energy storage in carbonate rocks of the Xian County geothermal field. Earth Science Frontiers, 27(01): 152−158. (in Chinese) DOI:10.13745/j.esf.2020.1.16.
Li XX, Li DQ, Xu Y. 2019. Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system. Engineering Mechanics, 36(7): 238−247. (in Chinese)
Liu HC, He H, Du L. 2020a. Study on the Influencing factors of the seepage law of reinjection water in carbonate fractured geothermal reservoir. Science Technology and Engineering, 20(35): 14505−14511. (in Chinese)
Liu HJ, Wang HW, Lei HW, et al. 2020b. Numerical modeling of thermal breakthrough induced by geothermal production in fractured granite. Journal of Rock Mechanics and Geotechnical Engineering, 12(4): 900−916. DOI:10.1016/j.jrmge.2020.01.002.
Liu JR. 2003. The status of geothermal reinjection. Hydrogeology & Engineering Geology, (03): 100−104. (in Chinese)
Liu QS, Liu XW. 2014. Research on critical problem for fracture network propagation and evolution with multifield coupling of fractured rock mass. Rock and Soil Mechanics, 35(02): 305−320. (in Chinese) DOI:10.16285/j.rsm.2014.02.003.
Liu YG, Liu GH, Zhao ZH, et al. 2019b. Theoretical model of geothermal tail water reinjection based on an equivalent flow channel model: A case study in Xianxian, North China Plain. Energy Exploration & Exploitation, 37(2): 849−864. DOI:10.1177/01445987188224 01.
Mazor E, Truesdell AH. 1984. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico. Geothermics, 13(1/2): 91−102. DOI:10.1016/0375-6505(84)90009-9.
O'Sullivan MJ, Pruess K, Lippmann MJ. 2001. State of the art of geothermal reservoirs simulation. Geothermics, 30(4): 395−429. DOI:10.1016/S0375-6505(01)00005-0.
Qu ZQ, Zhang W, Guo TK, et al. 2017. Research on the effect of geothermal reservoir parameters and bedding fractures on geothermaldeliverability based on COMSOL. Progress in Geophysics, 32(06): 2374−2382. (in Chinese)
Sun JX, Yue GF, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Journal of Groundwater Science and Engineering, 11(4): 379−390. DOI:10.26599/jgse.2023.9280030.
Sun ZX, Xu Y, Lv SH, et al. 2016. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems. Journal of China University of Petroleum(Edition of Natural Science), 40(06): 109−117. (in Chinese) DOI:10.3969/ j.issn.1673-5005.2016.06.014.
Tang JP, Qiu YM. 2023. Analysis of the influence of the distance between producing Wells on the enhancedgeothermal system. Chinese Journal of Computational Mechanics, 40(01): 126−132. (in Chinese)
Wang GL, Liu YG, Zhu X, et al. 2020a. The status and development trend of geothermal resources in China. Earth Science Frontiers, 27(01): 1−9. (in Chinese) DOI:10.13745/j.esf.2020.1.1.
Wang GL, Lu C. 2023. Stimulation technology development of hot dry rock and Enhanced geothermal system driven by carbon neutrality target. Geology and Resources, 32(01): 85−95+126. (in Chinese) DOI:10.13686/j.cnki.dzyzy.2023.01.011.
Wang LJ, Yuan AD, Wang HT, et al. 2022b. EGS heat-flow coupled heat transfer characteristics of single fracture thermal storage combined with wellbore. Journal of Anhui Polytechnic University, 37(05): 66−72+79. (in Chinese)
Wang SF, Liu JR, Lin P. 2013. A study of reinjection experiment and tracer test in a karst geothermal reservoir. Hydrogeology & Engineering Geology, 40(06): 129−133. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.2013.06.025.
Wang Y, Liu Y, Bian K, et al. 2021. Influence of low temperature tail water reinjection on seepage and heat transfer of carbonate reservoirs. Energy Exploration & Exploitation, 39(6): 2062−2079. DOI:10.1177/014459 87211020416.
Wang Y, Su BY, Ying XZ. 1995. Three-dimensional fractured rock seepage coupling model and its finite element simulation. Hydrogeology & Engineering Geology, (03): 1−5. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.1995.03.001.
Xiao P, Dou B, Tian H, et al. 2021. Numerical simulation of seepage and heat transfer in single fractured rock mass of geotherma reservoirs. Drilling Engineering, 48(02): 16−28. (in Chinese)
Yao J, Zhang X, Huang Z, et al. 2022. Numerical simulation of thermo–hydraulic coupling processes in fractured karst geothermal reservoirs. Natural Gas Industry B, 9(6): 511−520. DOI:10.1016/j.ngib.2022.11.003.
Zeng MX, Ruan CX, Zhao YB, et al. 2008. Connect test between karst cranny reservoir pumping well and injection well. Geology and Exploration, (02): 105−109. (in Chinese)
Zhao J, Brown ET. 1992. Hydro-thermo-mechanical properties of joints in the carnmenellis granite. GeoScienceWorld, 25(4): 279−290. DOI:10.1144/GSL.QJEG.1992.025.04.03.
Zhao J, Tso CP. 1993. Heat transfer by water flow in rock fractures and the application to hot dry rock geothermal systems. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(6): 633−641. DOI:10.1016/0148-9062(93)91223-6.
Zhao ZH, Liu GH, Wang JC, et al. 2022. A robust numerical modeling framework for coupled thermo-hydro-mechanical process in deep geoenergy engineering. Engineering Mechanics, 37(06): 1−14. (in Chinese) DOI:10.13225/j.cnki.jccs.2022.1027.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)