The application of Geographic Information System (GIS) methodologies offers valuable insights into the hydrological behaviour of watersheds through the analysis of their morphometric attributes. This study focuses on the Goriganga River, a major tributary of the Ganga River system, by conducting a detailed morphometric analysis using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery with 30 m resolution, alongside survey of India topographic sheets. Thirty-two watersheds within the river basin were delineated to calculate linear, areal, and relief morphometric parameters, covering a total drainage area of 2,183.11 km2. The drainage pattern, primarily dendritic to sub-dendritic, is shaped by the region's topography, geological structure, and precipitation patterns. Classified as a 6th-order basin, the drainage density ranges from 1.21 km/km2 to 1.96 km/km2, underlining the significant influence of the regional physiography and lithological composition on the stream ordering. Relief analysis suggests the basin is in an early developmental stage, characterised by varying slope gradients and a low to moderate risk of soil erosion. The basin's hydrogeology is complex, with aquifer distribution primarily governed by lithological factors. Limestone, due to its high permeability and karst features, forms the principal aquifer, although it is susceptible to contamination. In contrast, groundwater potential in the Basement Gneissic Complex and Schist regions is limited to structurally controlled zones, while shale acts as an aquitard. The basin's heterogeneous aquifer characteristics emphasize the need for localized groundwater management strategies tailored to specific lithological units. The integration of remote sensing and GIS techniques effectively delineates the basin's morphometric and hydrogeological characteristics, providing critical information for the development of sustainable water resource management strategies.
Abijith D, Saravanan S, Singh L, et al. 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones - a case study from Ponnaniyaru watershed, Tamil Nadu, India. Hydrological Research, 3: 1−14. DOI:10.1016/j.hydres.2020.02.002.
Aher PD, Adinarayana J, Gorantiwar SD. 2014. Quantifcation of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511: 850−860. DOI:10.1016/j.jhydrol.2014.02.028.
Chorley RJ. 1957. Climate and morphometry. The Journal of Geology, 65(6): 628−638. DOI:10.1086/626468.
Clark L. 1985. Groundwater abstraction from basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18(1): 25−34. DOI:10.1144/GSL.QJEG.1985.018.01.05.
Das PK. 2015. Global warming, glacial lakes and cloud burst events in Garhwal-Kumaon Himalaya: A hypothetical analysis. International Journal of Environmental Sciences, 5(4): 697−708. DOI:10.6088/ijes.2014050100065.
Esper Angillieri MY. 2008. Morphometric analysis of Colangüil River Basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1): 107−111. DOI:10.1007/s00254-007-0969-2.
Faniran A. 1968. The index of drainage intensity: A provisional new drainage factor. Australian Journal of Science, 31(9): 326−330.
Ganie PA, Posti R, Pandey PK. 2024. Exploring and modelling the hydro-morphological landscape of a Himalayan basin: A geospatial study of Nandakini Basin in Uttarakhand, India. Discover Geoscience, 2(1): 27. DOI:10.1007/s44288-024-00032-2.
Ganie PA, Posti R, Aswal AS, et al. 2023a. A comparative analysis of the vertical accuracy of multiple open-source digital elevation models for the mountainous terrain of the north-western Himalaya. Modeling Earth Systems and Environment, 9(2): 2723−2743. DOI:10.1007/s40808-022-01641-x.
Ganie PA, Posti R, Bharti VS, et al. 2023b. Striking a balance between conservation and development: A geospatial approach to watershed prioritisation in the Himalayan Basin. Conservation, 3(4): 460−490. DOI:10.3390/conservation3040031.
Ganie PA, Posti R, Kumar P, et al. 2016. Morphometric analysis of a Kosi River Basin, Uttarakhand using geographical information system. International Journal of Multidisciplinary and Current Research, 4: 1190−1200.
Ganie PA, Posti R, Kunal K. 2023c. Modelling of the Himalayan Mountain river basin through hydro-morphological and compound factor-based approaches using geoinformatics tools. Modeling Earth Systems and Environment, 9(3): 3053−3084. DOI:10.1007/s40808-023-01691-9.
Ganie PA, Posti R, Kunal K, et al. 2022. Insights into the morphometric characteristics of the Himalayan River using remote sensing and GIS techniques: A case study of Saryu Basin, Uttarakhand, India. Applied Geomatics, 14(4): 707−730. DOI:10.1007/s12518-022-00461-z.
Gayen S, Bhunia GS, Shit PK. 2013. Morphometric analysis of Kangshabati-Darkeswar Interfuves area in West Bengal, India using ASTER DEM and GIS techniques. Journal of Geological Sciences, 2(4): 1−10. DOI:10.4172/2329-6755.1000133.
Gustafson GU, Krásný J. 1994. Crystalline rock aquifers: Their occurrence, use and importance. Applied Hydrogeology, 2: 64−75. DOI:10.1007/s100400050051.
Lü QT, Yan JY, Chen XH, et al. 2020. Progress of deep geological survey project under the China geological survey. China Geology, 3(1): 153−72. DOI:10.31035/cg2020001.
Hoek E, Marinos P, Marinos V. 2005. Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences, 42/2: 277−285. DOI:10.1016/j.ijrmms.2004.09.015.
Horton RE. 1945. Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3): 275−370. DOI:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
Howard AD. 1990. Theoretical model of optimal drainage networks. Water Resources Research, 26(9): 2107−2117. DOI:10.1029/WR026i009p02107.
Joshi LM, Kotlia BS. 2015. Neotectonically triggered instability around the palaeolake regime in Central Kumaun Himalaya, India. Quaternary International, 371: 219−231. DOI:10.1016/j.quaint.2014.10.033.
Kabite G, Gessesse B. 2018. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 6: 175−83. DOI:10.1016/j.iswcr.2018.02.003.
Khatoon T, Javed A. 2022. Morphometric behavior of Shahzad Watershed, Lalitpur District, Uttar Pradesh, India: A geospatial approach. Journal of Geographic Information System, 14(3): 193−220. DOI:10.4236/jgis.2022.143011.
Kumar L, Joshi G, Agarwal KK. 2020. Morphometry and morphostructural studies of the parts of Gola River and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India. Geotectonics, 54(3): 410−427. DOI:10.1134/S0016852120030048.
Kumar N, Singh SK, Singh VG, et al. 2018. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth System Environment, 4: 295−310. DOI:10.1007/s40808-018-0425-1.
Loritz R, Kleidon A, Jackisch C, et al. 2019. A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9): 3807−3821. DOI:10.5194/hess-23-3807-2019.
Mahadevaswamy G, Nagaraju D, Siddalingamurthy S, et al. 2011. Morphometric analysis of Nanjangud taluk, Mysore District, Karnataka, India, using GIS Techniques. International Journal of Geomatics and Geosciences, 1(4): 721−734.
Morris DG, Heerdegen RG. 1988. Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology, 1(2): 131−141. DOI:10.1016/0169-555X(88)90011-6.
Mustak SK, Baghmar NK, Ratre CR. 2012. Measurement of dissection index of Pairi River basin using remote sensing and GIS. National Geographical Journal of India, 58(2): 97−106.
Nag SK. 1998. Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1): 69−76. DOI:10.1007/BF03007341.
Neuzil CE. 1994. How permeable are clays and shales? Water resources research, 30(2): 145−150. DOI:10.1029/93WR02930.
Nikhil Raj PP, Azeez PA. 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha river southern India. Open Journal of Modern Hydrology, 02: 91−98. DOI:10.4236/ojmh.2012.24011.
Pankaj A, Kumar P. 2009. GIS-based morphometric analysis of fve major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37(1): 157−166. DOI:10.1007/s12524-009-0007-9.
Phillips JD. 2006. Evolutionary geomorphology: Thresholds and nonlinearity in landform response to environmental change. Hydrology and Earth System Sciences, 10(5): 731−742. DOI:10.5194/hess-10-731-2006.
Rai PK, Mohan K, Mishra S, et al. 2017. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1): 217−232. DOI:10.1007/s13201-014-0238-y.
Saha S, Das J, Mandal T. 2022. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: A study on Rayeng basin in Darjeeling Himalaya. Environmental Challenges, 7: 100463. DOI:10.1016/j.envc.2022.100463.
Schumm SA. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597−646. DOI:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
Selvan MT, Ahmad S, Rashid SM. 2011. Analysis of the geomorphometric parameters in high altitude glaciered terrain using SRTM DEM data in Central Himalaya, India. ARPN Journal of Science and Technology, 1(1): 22−27.
Shekar PR, Mathew A. 2022. Evaluation of morphometric and hypsometric analysis of the Bagh River basin using remote sensing and geographic information system techniques. Energy Nexus, 7: 100−104. DOI:10.1016/j.nexus.2022.100104.
Singh S, Singh MB. 1997. Morphometric analysis of Kanhar river basin. National Geographical Journal of India, 43(1): 31−43.
Smith KG. 1950. Standards for grading texture of erosional topography. American Journal of Science, 248(9): 655−668. DOI:10.2475/ajs.248.9.655.
Sreedevi PD, Owais SHHK, Khan HH, et al. 2009. Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of Geological Society of India, 273(4): 543−552. DOI:10.1007/s12594-009-0038-4.
Strahler AN. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117−1142. DOI:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
Subayani AM, Qari MH, Matsah MI. 2012. Digital elevation model and multivariate statistical analysis of morphometric parameters of some wadis, western Saudi Arabia. Arabian Journal of Geosciences, 5(1): 147−157. DOI:10.1007/s12517-010-0149-7.
Tassew BG, Belete MA, Miegel K. 2021. Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2): 195−209. DOI:10.1080/15715124.2021.1938091.
Thomas J, Joseph S, Thrivikramaji KP. 2010. Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2): 135−156. DOI:10.1080/17538940903464370.
Valdiya KS. 1976. Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains. Tectonophysics, 32(3/4): 353−386. DOI:10.1016/0040-1951(76)90069-X.
Vijith H, Satheesh R. 2006. GIS-based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2): 181−185. DOI:10.1007/BF02991823.
Vyas S, Singh GP. 2020. Morphometric analysis of hard rock terrain of Banne watershed, District Chattarpur, Madhya Pradesh, India using remote sensing and GIS. International Journal on Emerging Technologies, 11(2): 714−721.
Zhai X, Zhang Y, Zhang Y, et al. 2021. Simulating flash flood hydrographs and behavior metrics across China: Implications for flash flood management. Science of the Total Environment, 763: 142977. DOI:10.1016/j.scitotenv.2020.142977.