Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study aims to propose a decision-making method based on artificial potential fields (APFs) and finite state machines (FSMs) in emergency conditions. This study presents a decision-making method based on APFs and FSMs for emergency conditions. By modeling the longitudinal and lateral potential energy fields of the vehicle, the driving state is identified, and the trigger conditions are provided for path planning during lane changing. In addition, this study also designed the state transition rules based on the longitudinal and lateral virtual forces. It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations. To illustrate the performance of the decision-making model by considering APFs and finite state machines. The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals. The contributions of this study are two-fold. A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios. Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model, leading to the formulation of transition rules between different states of autonomous vehicles (AVs).
Guo, N., Zhang, X., Zou, Y., 2022. Real-time predictive control of path following to stabilize autonomous electric vehicles under extreme drive conditions. Automot Innov, 5, 453–470.
Li, H., Liu, W., Yang, C., Wang, W., Qie, T., Xiang, C., 2022. An optimization-based path planning approach for autonomous vehicles using the DynEFWA-artificial potential field. IEEE Trans Intell Veh, 7, 263–272.
Liang, Y., Li, Y., Yu, Y., Zhang, Z., Zheng, L., Ren, Y., 2021. Path-following control of autonomous vehicles considering coupling effects and multi-source system uncertainties. Automot Innov, 4, 284–300.
Liu, Y., Lyu, C., Zhang, Y., Liu, Z., Yu, W., Qu, X., 2021. DeepTSP: Deep traffic state prediction model based on large-scale empirical data. Commun Transport Res, 1, 100012.
Liu, Z., Li, Y., Wu, Y., 2023b. Multiple UAV formations delivery task planning based on a distributed adaptive algorithm. J Frankl Inst, 360, 3047–3076.
Ma, H., An, B., Li, L., Zhou, Z., Qu, X., Ran, B., 2023a. Anisotropy safety potential field model under intelligent and connected vehicle environment and its application in car-following modeling. J Int Con Veh, 6, 79–90.
Ma, Y., Dong, F., Yin, B., Lou, Y., 2023b. Real-time risk assessment model for multi-vehicle interaction of connected and autonomous vehicles in weaving area based on risk potential field. Phys A Stat Mech Appl, 620, 128725.
Nguyen, H. D., Choi, M., Han, K., 2023. Risk-informed decision-making and control strategies for autonomous vehicles in emergency situations. Accid Anal Prev, 193, 107305.
Rasekhipour, Y., Khajepour, A., Chen, S. K., Litkouhi, B., 2017. A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans Intell Transport Syst, 18, 1255–1267.
Wang, W., Qie, T., Yang, C., Liu, W., Xiang, C., Huang, K., 2022a. An intelligent lane-changing behavior prediction and decision-making strategy for an autonomous vehicle. IEEE Trans Ind Electron, 69, 2927–2937.
Wang, X., Qi, X., Wang, P., Yang, J., 2021. Decision making framework for autonomous vehicles driving behavior in complex scenarios via hierarchical state machine. Auton Intell Syst, 1, 10.
Wang, Y., Cao, X., Ma, X., 2022b. Evaluation of automatic lane-change model based on vehicle cluster generalized dynamic system. Automot Innov, 5, 91–104.
Xie, S., Hu, J., Bhowmick, P., Ding, Z., Arvin, F., 2022. Distributed motion planning for safe autonomous vehicle overtaking via artificial potential field. IEEE Trans Intell Transport Syst, 23, 21531–21547.
Zheng, X., Huang, B., Ni, D., Xu, Q., 2018. A novel intelligent vehicle risk assessment method combined with multi-sensor fusion in dense traffic environment. J Intell Connect Veh, 1, 1–14.
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).