PDF (4.6 MB)
Collect
Submit Manuscript
Research Article | Open Access

Segmented trust assessment in autonomous vehicles via eye-tracking

Miklós Lukovics()Szabolcs PrónayBarbara Nagy
Faculty of Economics and Business Administration, University of Szeged, Szeged H-6726, Hungary
Show Author Information

Abstract

Previous studies have identified trust as one of the key factors in the technology acceptance of autonomous vehicles. As these studies mostly investigated the population in general, little is known about segment-specific differences. Furthermore, the widely used survey methods are less able to capture the deeper forms of trust—which neuroscientific methods are much better suited to capture. The main objective of our research is to study trust as one of the key factors of technology acceptance related to autonomous vehicles by using neuroscientific methods for specific consumer segments. Real-time eye-tracking tests were applied to a sample of 113 participants, combined with a posttest self-report. The tests were carried out under laboratory conditions during which our subjects watched videos recorded with the internal cameras of autonomous vehicles. Based on the fixation count, total fixation duration, and pupil dilation, we empirically verified that the trust level of all five identified segments is relatively low, while the trust level of the “traditional rejecting” segment is the lowest. An increase in trust level can be shown if the subjects receive extra information about the journey. Another important finding is that the self-reported trust level is not always congruent with the eye-tracking analysis results; therefore, combined approaches can lead to greater measurement validity.

References

 
Bagheri, N., Jamieson, G. A., 2004. Considering subjective trust and monitoring behavior in assessing automation-induced ‘complacency’. In: Human performance, situation awareness, and automation: Current research and trends, 54–59.
 
Boon, S. D., Holmes, J. G., 1991. The Dynamics of Interpersonal Trust: Resolving Uncertainty in Face of Risk. Cambridge, UK: Cambridge University Press.
 
Bozkir, E., Stark, P., Gao, H., Hasenbein, L., Hahn, J. U., Kasneci, E., et al., 2021. Exploiting object-of-interest information to understand attention in VR classrooms. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR), 597–605.
 
Cutrell, E., Guan, Z., 2007. What are you looking for? An eye-tracking study of information usage in web search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 407–416.
 

Csepeli, Gy., Örkény, A., Székelyi, M., Barna, I., 2004. Bizalom és gyanakvás. Szociológiai Szemle, 1, 3−35.

 
Desai, M., Medvedev, M., Vázquez, M., McSheehy, S., Gadea-Omelchenko, S., Bruggeman, C., et al., 2012. Effects of changing reliability on trust of robot systems. In: Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, 73–80.
 

Dickerhoof, A., Smith, C. L., 2014. Looking for query terms on search engine results pages. Proc Assoc For Info, 51, 1−5.

 
Djamasbi, S., Hall-Phillips, A., Yang, R., 2013. Search results pages and competition for attention theory: An exploratory eye-tracking study. In: International Conference on Human Interface and the Management of Information, 576–583.
 
Dunn, M. J., Alexander, R. G., Amiebenomo, O. M., Arblaster, G., Atan, D., Erichsen, J. T., et al., 2023. Minimal reporting guideline for research involving eye tracking (2023 edition). Behav Res Methods, 1–7.
 
Egusa, Y. Takaku, M. Terai, H. Saito, H. Kando, N. Miwa, M., 2008. Visualization of user eye movements for search result pages. In: Proceedings of the EVIA, 42–46.
 

Eraslan, S., Yaneva, V., Yesilada, Y., Harper, S., 2018. Web users with autism: eye tracking evidence for differences. Behav Inform Technol, 38, 678−700.

 
Fenyvesi, É., Vágány, J., Kárpáti-Daróczi, J., 2013. A bizalom és az érzelmi intelligencia szerepe a szervezeti tagok “együttműködöbbé” válásában. Agora, 34–48. (in Hungarian
 

Fitts, P. M., Jones, R. E., Milton, J. L., 1950. Eye movements of aircraft pilots during instrument landing approaches. Aeronautical Engineering Review, 9, 1−5.

 
Guan, Z., Cutrell, E., 2007. An eye tracking study of the effect of target rank on web search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 417–420.
 
Habuchi, Y., Kitajima, M., Takeuchi, H., 2008. Comparison of eye movements in searching for easy-to-find and hard-to-find information in a hierarchically organized information structure. In: Proceedings of the 2008 symposium on Eye tracking research & applications, 131–134.
 
Hámori, B., 2004. Bizalom, jóhírnév és identitás az elektronikus piacokon. Közgazdasági Szemle, 51, 832–848. (in Hungarian
 

Józsa, E., Hámornik, B. P., 2011. Find the difference!: Eye tracking study on information seeking behavior using an online game. J Eye Track Vis Cogn Emot, 2, 27−35.

 

Kim, J., Thomas, P., Sankaranarayana, R., Gedeon, T., Yoon, H. J., 2016. Understanding eye movements on mobile devices for better presentation of search results. Asso For Info Science & Tech, 67, 2607−2619.

 

Koul, S., Eydgahi, A., 2018. Utilizing Technology Acceptance Model (TAM) for driverless car technology Adoption. Journal Technology Management & Innovation, 13, 37−46.

 

Kumar, N., 1996. The power of trust in manufacturer-retailer relationships. Harv Bus Rev, 74, 93−107.

 

Muir, B. M., Moray, N., 1996. Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. Ergonomics, 39, 429−460.

 
Nagy, B., Prónay, S., Lukovics, M., 2022. Én vezessek, te vezetsz vagy önvezet? –az önvezetőjármű-elfogadás öt perszóna típusa magyarországon. Marketing És Menedzsment, 56, 23–34. (in Hungarian
 
Nagy, J., Schubert, A., 2007. A bizalom szerepe az üzleti kapcsolatokban. Budapesti Corvinus Egyetem, 77. (in Hungarian
 
Orlosky, J., Huynh, B., Hollerer, T., 2019. Using eye tracked virtual reality to classify understanding of vocabulary in recall tasks. In: 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), 66–73.
 
Perello-March, J., Burns, C., Elliott, M., Birrell, S., 2019. Integrating trust in automation into driver state monitoring systems. In: International Conference on Human Interaction and Emerging Technologies, 344–349.
 
Pernice, K., Nielsen, J., 2009. How to conduct and evaluate usability studies ssing eyetracking. CA, USA: Nielsen Norman Group.
 

Raats, K., Fors, V., Pink, S., 2020. Trusting autonomous vehicles: An interdisciplinary approach. Transp Res Interdiscip Perspect, 7, 100201.

 
Rogers, E., 2003. Diffusion of Innovations, 5th edn. New York: Free Press.
 
Sheng, S., Pakdamanian, E., Han, K., Kim, B., Tiwari, P., Kim, I., et al., 2019. A case study of trust on autonomous driving. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 4368–4373.
 
Varga, Á., 2016. Neuromarketing, a marketingkutatás új iránya. Veztud, 47, 55–63. (in Hungarian
 

Vorm, E. S., Combs, D. J. Y., 2022. Integrating transparency, trust, and acceptance: The intelligent systems technology acceptance model (ISTAM). Int J Hum, 38, 1828−1845.

 
Walker, F., Verwey, W., Martens, M., 2018. Gaze behaviour as a measure of trust in automated vehicles. In: Proceedings of the 6th Humanist Conference, 1–6.
 
Wickens, C. D., Hollands, J. G., Banbury, S., Parasuraman, R., 2015. Engineering Psychology and Human Performance. London, UK: Psychology Press.
 
Xu, S., Jiang, H., Lau, F. C. M., 2008. Personalized online document, image and video recommendation via commodity eye-tracking. In: Proceedings of the 2008 ACM conference on Recommender systems, 83–90.
Journal of Intelligent and Connected Vehicles
Pages 151-161
Cite this article:
Lukovics M, Prónay S, Nagy B. Segmented trust assessment in autonomous vehicles via eye-tracking. Journal of Intelligent and Connected Vehicles, 2024, 7(2): 151-161. https://doi.org/10.26599/JICV.2023.9210037
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return