Almón-Manzano, L., Pastor-Vargas, R., Troncoso, J. M. C., 2022. Deep reinforcement learning in Agents’ training: Unity ML-agents. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, 391–400.
Lopez, P. A., Wiessner, E., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y. P., et al., 2018. Microscopic Traffic Simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2575–2582.
Bengio, Y., 2014. Evolving culture versus local minima. In: Growing Adaptive Machines: Combining Development and Learning in Artificial Neural Networks, 109–138.
Bengio, Y., Louradour, J., Collobert, R., Weston, J., 2009. Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, 41–48.
Boroujeni, Z., Goehring, D., Ulbrich, F., Neumann, D., Rojas, R., 2017. Flexible unit A-star trajectory planning for autonomous vehicles on structured road maps. In: 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 7–12.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al., 2016. OpenAI Gym. https://arxiv.org/abs/1606.01540
Buckley, D., 2023. Unity ML-Agents Tutorials. https://gamedevacademy.org/unity-machine-learning-agents-tutorials
CARLA Map Editor, 2023. https://github.com/carla-simulator/carla-map-editor
CARLA Scenario Runner, 2023. https://github.com/carla-simulator/scenario_runner
Dev, Y., 2023. Chevrolet Corvette 1980 Different colours. https://sketchfab.com/3d-models/chevrolet-corvette-1980-different-colours-7e428bdb3ab54b4e9ac610e545fd9d03
Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., et al., 2017. OpenAI Baselines. https://github.com/openai/baselines
Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J., 2008. Practical search techniques in path planning for autonomous driving. AAAI Work Tech Rep, WS–08–10, 32–37.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017. CARLA: An open urban driving simulator. In: Conference on robot learning, 1–16.
Elios Lab., 2023. Pathfollowing. https://github.com/Elios-Lab/pathfollowing.git
Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L., Fiser, M., et al., 2018. PRM-RL: Long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), 5113–5120.
Florensa, C., Held, D., Wulfmeier, M., Zhang, M., Abbeel, P., 2017. Reverse curriculum generation for reinforcement learning. In: Proceedings of the 1st Annual Conference on Robot Learning, 482–495.
Khatib, O., 1990. Real-time obstacle avoidance for manipulators and mobile robots. In: Cox IJ, Wilfong GT, Autonomous Robot Vehicles, 396–404.
Lazzaroni, L., Bellotti, F., Capello, A., Cossu, M., De Gloria, A., Berta, R., 2022. Deep reinforcement learning for automated car parking. In: International Conference on Applications in Electronics Pervading Industry, 125−130.
Lazzaroni, L., Pighetti, A., Bellotti, F., Capello, A., Cossu, M., Berta, R., 2024. Automated parking in CARLA: A deep reinforcement learning-based approach. In: International Conference on Applications in Electronics Pervading Industry, 352–357.
Leurent, E., 2018. An environment for autonomous driving decision-making. https://github.com/Farama-Foundation/HighwayEnv
Ling, Y., Yang, N., Yu, H., Zhu, Y., 2021. Novel Bayesian network incremental learning method based on particle swarm optimization algorithm. In: International Conference on Intelligent and Interactive Systems and Applications, 941–947.
Liu, Y., Wu, F., Liu, Z., Wang, K., Wang, F., Qu, X., 2023. Can language models be used for real-world urban-delivery route optimization? Innovation, 4, 100520.
Majumder, A., 2021. Deep Reinforcement Learning in Unity: With Unity ML Toolkit. Berkeley, CA: Apress.
Martin, E. Zhai, Y., 2019. Top 5 ways real-time 3D is revolutionizing the automotive product lifecycle. https://unity.com/resources/whitepaper-top-5-use-cases-for-rt3d
Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., et al., 2016. Asynchronous methods for deep reinforcement learning. In: International conference on machine learning, 1928–1937.
Nordeus, E., 2022. Self driving vehicle. https://github.om/Habrador/Self-driving-vehicle
NVIDIA-Omniverse., 2023. NVIDIA PhysX. https://github.com/NVIDIA-Omniverse/PhysX
Peng, Y., Liu, Y., Zhang, H., 2021. Deep reinforcement learning based path planning for UAV-assisted edge computing networks. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), 1–6.
Petereit, J., Emter, T., Frey, C.W., Kopfstedt, T., Beutel, A., 2012. Application of hybrid A* to an autonomous mobile robot for path planning in unstructured outdoor environments. In: ROBOTIK 2012; 7th German Conference on Robotics, 1–6.
Polack, P., Altche, F., d’Andrea-Novel, B., de La Fortelle, A., 2017. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? In: 2017 IEEE Intelligent Vehicles Symposium (IV), 812–818.
Pothan, S., Nandagopal, J. L., Selvaraj, G., 2017. Path planning using state lattice for autonomous vehicle. In: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), 1–5.
Raju K., 2020. Autonomous car parking using ML-agents. https://medium.com/xrpractices/autonomous-car-parking-using-ml-agents-d780a366fe46
Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P., 2017a. Trust region policy optimization. In: International conference on machine learning, 1889–1897.
Sedighi, S., Nguyen, D. V., Kuhnert, K. D., 2019. Guided hybrid A-star path planning algorithm for valet parking applications. In: 2019 5th International Conference on Control, Automation and Robotics (ICCAR), 570–575.
Silva, F. L., Filgueira da Silva, S., Mazzariol Santiciolli, F., Eckert, J. J., Silva, L. C. A., Dedini, F. G., 2021. Multi-objective optimization of the steering system and fuzzy logic control applied to a car-like robot. In: International Symposium on Multibody Systems and Mechatronics, 195–202.
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M., 2014. Deterministic policy gradient algorithms. In: Proceedings of the 31st International Conference on International Conference on Machine Learning-Volume 32, 387–395.
Simonini, T., Sanseviero, O., 2023. The hugging face deep reinforcement learning class. https://github.com/huggingface/deep-rl-class.git
Unity, 2023. Unity. https://unity.com
Unreal Engine, 2023. Unreal Engine. https://www.unrealengine.com/en-US
Urmanov, M., Alimanova, M., Nurkey, A., 2019. Training unity machine learning agents using reinforcement learning method. In: 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), 1–4.
Zhang, K., Niroui, F., Ficocelli, M., Nejat, G., 2018. Robot Navigation of Environments with Unknown Rough Terrain Using deep Reinforcement Learning. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 1–7.