Banerjee, K., Notz, D., Windelen, J., Gavarraju, S., He, M., 2018. Online camera LiDAR fusion and object detection on hybrid data for autonomous driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), 1632–1638.
Black, J., 2018. Urban Transport Planning: Theory and Practice. London, UK: Routledge.
Buchanan, B. G., Shortliffe, E. H., 1984. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Boston, USA: Addison-Wesley Longman Publishing Co., Inc.
Chadwick, S., Maddern, W., Newman, P., 2019. Distant vehicle detection using radar and vision. In: 2019 International Conference on Robotics and Automation (ICRA), 8311–8317.
Chen, X., Liu, D., Hua, G., Mo, L., 2021b. A safety lane change method based on sensor date fusion designed for assistance driving. In: 2021 China Automation Congress (CAC), 5819–5823.
Cho, H., Seo, Y. W., Kumar, B. V. K. V., Rajkumar, R. R., 2014. A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), 1836–1843.
Choi, J., Ulbrich, S., Lichte, B., Maurer, M., 2013. Multi-target tracking using a 3D-Lidar sensor for autonomous vehicles. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 881–886.
de Villiers, J.P., Laskey, K., Jousselme, A.-L., Blasch, E., de Waal, A., Pavlin, G., Costa, P., 2015. Uncertainty representation, quantification and evaluation for data and information fusion. In: 2015 18th International Conference on Information Fusion (Fusion), 50–57.
El Madawi, K., Rashed, H., El Sallab, A., Nasr, O., Kamel, H., Yogamani, S., 2019. RGB and LiDAR fusion based 3D Semantic Segmentation for Autonomous Driving. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 7–12.
Fan, L., Wang, J., Chang, Y., Li, Y., Wang, Y., Cao, D., 2024. 4D mm Wave radar for autonomous driving perception: A comprehensive survey. IEEE Trans Intell Veh, 1–15.
Fan, R., Guo, S., Bocus, M. J., 2023. Autonomous Driving Perception. Singapore: Springer Nature.
Gläser, C., Michalke, T. P., Burkle, L., Niewels, F., 2014. Environment perception for inner-city driver assistance and highly-automated driving. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 1270–1275.
Göhring, D., Wang, M., Schnurmacher, M., Ganjineh, T., 2011. Radar/Lidar sensor fusion for car-following on highways. In: the 5th International Conference on Automation, Robotics and Applications, 407–412.
Guo, S., Jiang, Y., Li, J., Zhou, D., Su, S., Bocus, M. J., et al., 2023. Road environment perception for safe and comfortable driving. In: Autonomous Driving Perception: Fundamentals and Applications. Fan, R., Guo, S., Bocus, M.J., Eds. Singapore: Springer, 357–387.
Hartigan, J. A., 2012. Bayes Theory. Berlin, Germany: Springer Science & Business Media.
Hofmann, U., Rieder, A., Dickmanns, E. D., 2001. Radar and vision data fusion for hybrid adaptive cruise control on highways. In: Computer Vision Systems: Second International Workshop, ICVS 2001 Vancouver, 125–138.
Iovescu, C., Rao, S., 2017. The fundamentals of millimeter wave sensors. https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf
Jiang, B., Martinez, B., Valstar, M. F., Pantic, M., 2014. Decision level fusion of domain specific regions for facial action recognition. In: 2014 22nd International Conference on Pattern Recognition, 1776–1781.
Kellner, D., Barjenbruch, M., Dietmayer, K., Klappstein, J., Dickmann, J., 2013. Instantaneous lateral velocity estimation of a vehicle using Doppler radar. In: Proceedings of the 16th International Conference on Information Fusion, 877–884.
Khoshnaw, A., Zein-Sabatto, S., Malkani, M., 2012. Cross layers decision making and fusion model in layered sensing systems. In: SPIE Proceedings", "Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2012, 56–63.
Kim, B., Yi, K., 2013. Probabilistic states prediction algorithm using multi-sensor fusion and application to Smart Cruise Control systems. In: 2013 IEEE Intelligent Vehicles Symposium (IV), 888–895.
Knyaz, V. A., 2019. Multimodal data fusion for object recognition. In: Multimodal Sensing: Technologies and Applications, 198–209.
Kulkarni, A. U., Potdar, A. M., Hegde, S., Baligar, V. P., 2019. RADAR based Object Detector using Ultrasonic Sensor. In: 2019 1st International Conference on Advances in Information Technology (ICAIT), 204–209.
Kumar, R., Wolenetz, M., Agarwalla, B., Shin, J., Hutto, P., Paul, A., et al., 2003. DFuse: A framework for distributed data fusion. In: Proceedings of the 1st international conference on Embedded networked sensor systems, 114–125.
Kunz, F., Nuss, D., Wiest, J., Deusch, H., Reuter, S., Gritschneder, F., et al., 2015. Autonomous driving at Ulm University: A modular, robust, and sensor-independent fusion approach. In: 2015 IEEE Intelligent Vehicles Symposium (IV), 666–673.
Kutila, M., Pyykonen, P., Ritter, W., Sawade, O., Schaufele, B., 2016. Automotive LIDAR sensor development scenarios for harsh weather conditions. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 265–270.
Li, X., Ma, T., Hou, Y., Shi, B., Yang, Y., Liu, Y., et al., 2023. LoGoNet: towards accurate 3D object detection with local-to-global cross- modal fusion. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 17524–17534.
Liu, F., Lu, Z., Lin, X., 2022. Vision-based environmental perception for autonomous driving. Proc Inst Mech Eng Part D J Automob Eng, 09544070231203059.
Nesti, T., Boddana, S., Yaman, B., 2023. Ultra-Sonic Sensor based Object Detection for Autonomous Vehicles. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 210–218.
Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M., 2019. A deep learning-based radar and camera sensor fusion architecture for object detection. In: 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), 1–7.
Obrvan, M., Ćesić, J., Petrović, I., 2016. Appearance based vehicle detection by radar-stereo vision integration. In: Robot 2015: Second Iberian Robotics Conference, 437–449.
Paulet, M. V., Salceanu, A., Neacsu, O. M., 2016. Ultrasonic radar. In: 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), 551–554.
Philipp, R., Qian, H., Hartjen, L., Schuldt, F., Howar, F., 2021. Simulation-based elicitation of accuracy requirements for the environmental perception of autonomous vehicles. In: International Symposium on Leveraging Applications of Formal Methods, 129–145.
Rashed, H., Ramzy, M., Vaquero, V., El Sallab, A., Sistu, G., Yogamani, S., 2019. FuseMODNet: real-time camera and LiDAR based moving object detection for robust low-light autonomous driving. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2393–2402.
Reza, M., Choudhury, S., Dash, J. K., Roy, D. S., 2020. An ai-based real-time roadway-environment perception for autonomous driving. In: 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), 1–2.
Saleh, K., Hossny, M., Nahavandi, S., 2017. Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 1–6.
Sindagi, V., Patel, V., 2019. Multi-level bottom-top and top-bottom feature fusion for crowd counting. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 1002–1012.
Vasnier, K., Mouaddib, A. I., Gatepaille, S., Brunessaux, S., 2018. Multi-Level Information Fusion Approach with Dynamic Bayesian Networks for an Active Perception of the environment. In: 2018 21st International Conference on Information Fusion (FUSION), 1844–1850.
Velasco-Hernandez, G., Yeong, D. J., Barry, J., Walsh, J., 2020. Autonomous driving architectures, perception and data fusion: A review. In: 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 315–321.
Wang, Y., Cao, G., 2011a. Barrier coverage in camera sensor networks. In: Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing, 1–10.
Wang, Y., Cao, G., 2011b. On full-view coverage in camera sensor networks. In: 2011 Proceedings IEEE INFOCOM, 1781–1789.
Wang, Y., Sun, F., Lu, M., Yao, A., 2020a. Learning deep multimodal feature representation with asymmetric multi-layer fusion. In: Proceedings of the 28th ACM International Conference on Multimedia, 3902–3910.
Welch, G., Bishop, G., 1995. An introduction to the Kalman filter. https://courses.cs.washington.edu/courses/cse571/00au/papers/welch-bishop-kalman.pdf
Wu, S., McClean, S., 2005. Data fusion with correlation weights. In: European Conference on Information Retrieval, 275–286.
Yoo, J. H., Kim, Y., Kim, J., Choi, J. W., 2020. 3D-CVF: Generating joint camera and LiDAR features using cross-view spatial feature fusion for 3D object detection. In: European Conference on Computer Vision, 720–736.
Yuan, W., Krishnamurthy, S. V., Tripathi, S. K., 2003. Synchronization of multiple levels of data fusion in wireless sensor networks. In: GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), 221–225.
Zhang, L., Xie, Y., Luan, X., Zhang, X., 2018. Multi-source heterogeneous data fusion. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), 47–51.
Zhao, H., Zhang, Y., Meng, P., Shi, H., Li, L. E., Lou, T., et al., 2020. Driving scenario perception-aware computing system design in autonomous vehicles. In: 2020 IEEE 38th International Conference on Computer Design (ICCD), 88–95.
Zimmermann, H., 2011. Fuzzy Set Theory—and Its Applications. Berlin, Germany: Springer Science & Business Media.