AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Optimized Green Synthesis of Manilkara zapota Capped Silver Nanoparticles and Their Antimicrobial Application Through Formulation of Nano-gel Systems

Sonia ParasharMunish Garg( )
Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
Show Author Information

Graphical Abstract

Abstract

The present study is based on optimized green synthesis of silver nanoparticles (AgNPs) using Manilkara zapota fruit extract, formulation of topical gels, and evaluation for their antimicrobial properties. The results reveal that a reaction temperature of 35 °C and a reaction time of 11 h are the optimum conditions to get spherical AgNPs with a particle size of 100.7 nm and a zeta potential of −26.7 mV. The synthesized AgNPs formulated as topical gels demonstrate a broad-spectrum antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Aspergillus niger in comparison to the 0.2% (mass fraction) silver nitrate marketed formulation. The AgNPs loaded gels seem promising and could lead to a useful alternative for treating pathogenic infections.

References

[1]

G. Kapoor, S. Saigal, A. Elongavan. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology,Clinical Pharmacology, 2017, 33(3): 300−305. https://doi.org/10.4103/joacp.JOACP_349_15

[2]

S. Parashar, M.K. Sharma, C. Garg, et al. Green synthesized silver nanoparticles as silver lining in antimicrobial resistance: A review. Current Drug Delivery, 2022, 19(2): 170−181. https://doi.org/10.2174/1567201818666210331123022

[3]

Y. Wu, Y. Yang, Z. Zhang, et al. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Advanced Powder Technology, 2018, 29(2): 407−415. https://doi.org/10.1016/j.apt.2017.11.028

[4]

X.F. Zhang, Z.G. Liu, W. Shen, et al. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 2016, 17(9): 1534. https://doi.org/10.3390/ijms17091534

[5]

A. Husen, K.S. Siddiqi. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Research Letters, 2014, 9(1): 229. https://doi.org/10.1186/1556-276X-9-229

[6]

A. Kunhikrishnan, H.K. Shon, N.S. Bolan, et al. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 277−318. https://doi.org/10.1080/10643389.2013.852407

[7]

M. Hasan, K. Mehmood, G. Mustafa et al. Phytotoxic evaluation of phytosynthesized silver nanoparticles on lettuce. Coatings, 2021, 11(2): 225. https://doi.org/10.3390/coatings11020225

[8]

M. Hasan, A. Zafar, M. Imran, et al. Crest to trough cellular drifting of green-synthesized zinc oxide and silver nanoparticles. ACS Omega, 2022, 7(39): 34770−34778. https://doi.org/10.1021/acsomega.2c02178

[9]
S.O. Aisida, K. Ugwu, P.A. Akpa, et al. Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Materials Chemistry and Physics, 2019, 237: 121859.
[10]

N. Madubuonu, S.O. Aisida, I. Ahmad, et al. Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Applied Physics A, 2020, 126(1): 1−8. https://doi.org/10.1007/s00339-019-3249-6

[11]

M. Hasan, J. Iqbal, U. Awan, et al. Mechanistic study of silver nanoparticle’s synthesis by dragon’s blood resin ethanol extract and antiradiation activity. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 1320−1326. https://doi.org/10.1166/jnn.2015.9090

[12]

J.M. Ahn, H.J. Eom, X. Yang, et al. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode. Caenorhabditis elegans. Chemosphere, 2014, 108: 343−352. https://doi.org/10.1016/j.chemosphere.2014.01.078

[13]

L. Maurer, J.N. Meyer. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environmental Science:Nano, 2016, 3(2): 311−322. https://doi.org/10.1039/C5EN00187K

[14]

O.S. Adeyemi, E.O. Shittu, O.B. Akpor, et al. Silver nanoparticles restrict microbial growth by promoting oxidative stress and DNA damage. EXCLI Journal, 2020, 19: 492−500. https://doi.org/10.17179/excli2020-1244

[15]
S.K. Kailasa, T.J. Park, J.V. Rohit, et al. Antimicrobial activity of silver nanoparticles. Nanoparticles in pharmacotherapy. Amsterdam: Elsevier, 2019: 461–484.
[16]
D.A. Helal, D.A. El-Rhman, S.A. Abdel-Halim, et al. Formulation and evaluation of fluconazole topical gel. International Journal of Pharmacy and Pharmaceutical Sciences, 2012, 4(SUPPL. 5): 176–183.
[17]

H.J. Rathod, D.P. Mehta. A review on pharmaceutical gel. International Journal of Pharmaceutical Sciences, 2015, 1(1): 33−47.

[18]

R.M.P. Singh, A. Kumar, K. Pathak. Thermally triggered mucoadhesive in situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech, 2013, 14(1): 412−424. https://doi.org/10.1208/s12249-013-9921-9

[19]

R.S. dos Santos, H.C. Rosseto, J.B. da Silva, et al. The effect of carbomer 934P and different vegetable oils on physical stability, mechanical and rheological properties of emulsion-based systems containing propolis. Journal of Molecular Liquids, 2020, 307: 112969. https://doi.org/10.1016/j.molliq.2020.112969

[20]
S. Chanda, R. Nair Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract. Indian Journal of Pharmaceutical Sciences, 2008, 70(3): 390–393.
[21]

M.H. Ibraheim, A.A. Ibrahiem, T.R. Dalloul. Biosynthesis of silver nanoparticles using Pomegranate juice extract and its antibacterial activity. International Journal of Applied Sciences and Biotechnology, 2016, 4(3): 254−258. https://doi.org/10.3126/ijasbt.v4i3.15417

[22]

N. Swilam, K.A. Nematallah. Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Scientific Reports, 2020, 10: 14851. https://doi.org/10.1038/s41598-020-71847-5

[23]

W.L. Zhang, W.B. Jiang. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules, 2020, 155: 1252−1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093

[24]

P.K. Tyagi, S. Tyagi, D. Gola, et al. Ascorbic acid and polyphenols mediated green synthesis of silver nanoparticles from tagetes erecta L. aqueous leaf extract and studied their antioxidant properties. Journal of Nanomaterials, 2021, 2021: 1−9. https://doi.org/10.1155/2021/6515419

[25]

P. Moteriya, H. Padalia, S. Chanda. Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. Journal of Genetic Engineering and Biotechnology, 2017, 15(2): 505−513. https://doi.org/10.1016/j.jgeb.2017.06.010

[26]

S. Mathew, C.P. Victorio, J. Sidhi. Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) W.T. Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 2020, 13(12): 9139−9144. https://doi.org/10.1016/j.arabjc.2020.10.038

[27]
D. Elumalai, M. Hemavathi, C.V. Deepaa, et al. Evaluation of phytosynthesized silver nanoparticles from leaf extracts of Leucas aspera and Hyptissuaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite epidemiology and control, 2017, 2(4): 15–26.
[28]

R.C. Murdock, L. Braydich-Stolle, A.M. Schrand, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 2008, 101(2): 239−253. https://doi.org/10.1093/toxsci/kfm240

[29]
P.R. Murray, E.J. Baron. Manual of clinical microbiology. 8th ed. Washington: ASM Press, 2003.
[30]

J.C. Ontong, S. Singh, O.F. Nwabor, et al. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnology Letters, 2020, 42(12): 2653−2664. https://doi.org/10.1007/s10529-020-02971-5

[31]

K. Singh, M. Panghal, S. Kadyan, et al. Evaluation of antimicrobial activity of synthesized silver nanoparticles using phyllanthus amarus and tinospora cordifolia medicinal plants. Journal of Nanomedicine &Nanotechnology, 2014, 5(6): 1000250. https://doi.org/10.4172/2157-7439.1000250

[32]
M. Shukr, G.F. Metwally. Evaluation of topical gel bases formulated with various essential oils for antibacterial activity against methicillin-resistant Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 2014, 12(6): 877.
[33]

G. Misal, G. Dixit, V. Gulkari. Formulation and evaluation of herbal gel. Indian Journal of Natural Products and Resources, 2012, 3(4): 501−505.

[34]

K.S. Sandhu, N. Singh, M. Kaur. Characteristics of the different corn types and their grain fractions: Physicochemical, thermal, morphological, and rheological properties of starches. Journal of Food Engineering, 2004, 64(1): 119−127. https://doi.org/10.1016/j.jfoodeng.2003.09.023

[35]

S. Park, M.G. Chung, B. Yoo. Effect of octenylsuccinylation on rheological properties of corn starch pastes. Starch, 2004, 56(9): 399−406. https://doi.org/10.1002/star.200300274

[36]

E.J. Ricci, M.V. Bentley, M. Farah, et al. Rheological characterization of poloxamer 407 lidocaine hydrochloride gels. European Journal of Pharmaceutical Sciences, 2002, 17(3): 161−167. https://doi.org/10.1016/S0928-0987(02)00166-5

[37]
A. Prusty, P. Parida. Development and evaluation of gel incorporated with biogenically synthesised silver nanoparticles. Journal of Applied Biopharmaceutics and Pharmacokinetics, 2015, 3(1): 1–6.
[38]

S. Dash, P.N. Murthy, L. Nath, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 2020, 67(3): 217−223.

[39]

N. Mahendran, B. Anand, M. Rajarajan, et al. Green synthesis, characterization and antimicrobial activities of silver nanoparticles using Cissus quadarangularis leaf extract. Materials Today:Proceedings, 2021, 49(7): 2620−2623. https://doi.org/10.1016/j.matpr.2021.08.043

[40]

K.Y. Yong, M.S. Abdul Shukkoor. Manilkara Zapota: A phytochemical and pharmacological review. Materials Today:Proceedings, 2020, 29: 30−33. https://doi.org/10.1016/j.matpr.2020.05.688

[41]

H. Erjaee, H. Rajaian, S. Nazifi. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2017, 8(2): 025004. https://doi.org/10.1088/2043-6254/aa690b

[42]

P. Mathur, S. Jha, S. Ramteke, et al. Pharmaceutical aspects of silver nanoparticles. Artificial Cells,Nanomedicine,and Biotechnology, 2018, 46(sup1): 115−126. https://doi.org/10.1080/21691401.2017.1414825

[43]

M. Sikora, S. Kowalski, P. Tomasik, et al. Rheological and sensory properties of dessert sauces thickened by starch-xanthan gum combinations. Journal of Food Engineering, 2007, 79(4): 1144−1151. https://doi.org/10.1016/j.jfoodeng.2006.04.003

[44]

B.L. Karwasra, B.S. Gill, M. Kaur. Rheological and structural properties of starches from different Indian wheat cultivars and their relationships. International Journal of Food Properties, 2017, 20(sup1): S1093−S1106. https://doi.org/10.1080/10942912.2017.1328439

[45]

M.P. Mishra, R.N. Padhy. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. Journal of Applied Biomedicine, 2018, 16(2): 120−125. https://doi.org/10.1016/j.jab.2017.11.003

[46]

B. Khalandi, N. Asadi, M. Milani, et al. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Research, 2016, 67(2): 70−76. https://doi.org/10.1055/s-0042-113383

[47]

Y. Qing, L. Cheng, R. Li, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International Journal of Nanomedicine, 2018, 13: 3311−3327. https://doi.org/10.2147/IJN.S165125

Nano Biomedicine and Engineering
Pages 262-277
Cite this article:
Parashar S, Garg M. Optimized Green Synthesis of Manilkara zapota Capped Silver Nanoparticles and Their Antimicrobial Application Through Formulation of Nano-gel Systems. Nano Biomedicine and Engineering, 2023, 15(3): 262-277. https://doi.org/10.26599/NBE.2023.9290020

1006

Views

127

Downloads

1

Crossref

2

Scopus

Altmetrics

Received: 25 May 2022
Revised: 23 January 2023
Accepted: 05 May 2023
Published: 25 July 2023
© The Author(s) 2023.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return