AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Nanomaterials for Targeting Liver Disease: Research Progress and Future Perspectives

Yinghua Wu1,§Junfeng Zhang1,§Wen He3,§Chenchen Li1,2( )Yanli Wang1,2,3( )
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, China
School of Medicine, Shanghai University, Shanghai, China

§Yinghua Wu, Junfeng Zhang, and Wen He contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Liver disease is a significant global health issue that affects the liver and contributes to approximately 2 million deaths worldwide each year. Although treatment options including surgery and medication are available, effective treatment remains a challenge because of limitations of the traditional drug-delivery methods, such as uneven and nonspecific drug distribution, which lead to negative effects on healthy tissues and a reduction in drug bioavailability. Nanotechnology provides a promising solution for targeted drug delivery to the liver, which has unique anatomical and physiological structures that render it an ideal target for nanomedicine. Several categories of nanomaterials, including inorganic nanomaterials, polymer nanomaterials, and multifunctional nanoparticles (NPs), have been studied as potential agents for targeting this organ in the context of liver diseases. Using surface modification and functionalization, nanomaterials can be selectively targeted to liver tissue or hepatocytes, thus delivering drugs, and enhancing their efficacy while minimizing their side effects. Nanomaterials exhibit numerous benefits; however, their stability and toxicity pose potential risks to living organisms result in adverse effects, such as protein adsorption, and inflammation. Despite the challenges inherent to the development of nanomaterials, ongoing research and development have a great potential for the liver-targeted treatment of liver diseases through the use of nanotechnology. In this review, we first describe the nanomaterials used to target liver diseases, i.e., metallic NPs, ceramic nanomaterials, micelles, polysaccharides, liposomes, dendrimers, carbon nanotubes, and multifunctional NPs. Moreover, the mechanisms for nanomaterials target liver disease are discussed. Finally, this review discusses the current challenges and prospects for future research directions in this field.

References

[1]

P. Gines, A. Krag, J.G. Abraldes, et al. Liver cirrhosis. Lancet, 2021, 398(10308): 1359−1376. https://doi.org/10.1016/s0140-6736(21)01374-x

[2]

H. Tilg, P.D. Cani, E.A. Mayer. Gut microbiome and liver diseases. Gut, 2016, 65(12): 2035−2044. https://doi.org/10.1136/gutjnl-2016-312729

[3]

J.-C. Nault, O. Sutter, P. Nahon, et al. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. Journal of Hepatology, 2018, 68(4): 783−797. https://doi.org/10.1016/j.jhep.2017.10.004

[4]

B. Sangro, P. Sarobe, S. Hervas-Stubbs, et al. Advances in immunotherapy for hepatocellular carcinoma. Nature Reviews Gastroenterology &Hepatology, 2021, 18(8): 525−543. https://doi.org/10.1038/s41575-021-00438-0

[5]

J.-M. Pawlotsky, F. Negro, A. Aghemo, et al. Easl recommendations on treatment of hepatitis c: Final update of the series. Journal of Hepatology, 2020, 73(5): 1170−1218. https://doi.org/10.1016/j.jhep.2020.08.018

[6]

A. Gillessen, H.H.J. Schmidt. Silymarin as supportive treatment in liver diseases: A narrative review. Advances in Therapy, 2020, 37(4): 1279−1301. https://doi.org/10.1007/s12325-020-01251-y

[7]

D. Witzigmann, J.A. Kulkarni, J. Leung, et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Advanced Drug Delivery Reviews, 2020, 159: 344−363. https://doi.org/10.1016/j.addr.2020.06.026

[8]

O.A. Almazroo, M.K. Miah, R. Venkataramanan. Drug metabolism in the liver. Clinics in Liver Disease, 2017, 21(1): 1−20. https://doi.org/10.1016/j.cld.2016.08.001

[9]

J.L. Li, C.Y. Chen, T. Xia. Understanding nanomaterial-liver interactions to facilitate the development of safer nanoapplications. Advanced Materials, 2022, 34(11): 2106456. https://doi.org/10.1002/adma.202106456

[10]

M.E. Davis, Z. Chen, D.M. Shin. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery, 2008, 7(9): 771−782. https://doi.org/10.1038/nrd2614

[11]

Y. Li, T. Thambi, D.S. Lee. Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Advanced Healthcare Materials, 2018, 7(1): 1700886. https://doi.org/10.1002/adhm.201700886

[12]

L. Gu, A. Faig, D. Abdelhamid, et al. Sugar-based amphiphilic polymers for biomedical applications: From nanocarriers to therapeutics. Accounts of Chemical Research, 2014, 47(10): 2867−2877. https://doi.org/10.1021/ar4003009

[13]

L. Li, H. Wang, Z.Y. Ong, et al. Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today, 2010, 5(4): 296−312. https://doi.org/10.1016/j.nantod.2010.06.007

[14]

Q. Cheng, T. Wei, L. Farbiak, et al. Selective organ targeting (sort) nanoparticles for tissue-specific mrna delivery and crispr-cas gene editing. Nature Nanotechnology, 2020, 15(4): 313−320. https://doi.org/10.1038/s41565-020-0669-6

[15]

S. Salunkhe, Dheeraj, M. Basak, et al. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. Journal of Controlled Release, 2020, 326: 599−614. https://doi.org/10.1016/j.jconrel.2020.07.042

[16]

E.A. Taha, J. Lee, A. Hotta. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342: 345−361. https://doi.org/10.1016/j.jconrel.2022.01.013

[17]

Y. Li, J. Gao, S. Wang, et al. Organic nir-ii dyes with ultralong circulation persistence for image-guided delivery and therapy. Journal of Controlled Release, 2022, 342: 157−169. https://doi.org/10.1016/j.jconrel.2022.01.005

[18]

D. Cheng, W. Xu, X.Y. Gong, et al. Design strategy of fluorescent probes for live drug-induced acute liver injury imaging. Accounts of Chemical Research, 2021, 54(2): 403−415. https://doi.org/10.1021/acs.accounts.0c00646

[19]

M. Bhia, M. Motallebi, B. Abadi, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics, 2021, 13(2): 291. https://doi.org/10.3390/pharmaceutics13020291

[20]

M. Liu, Q. Huang, Y. Zhu, et al. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio, 2022, 13: 100215. https://doi.org/10.1016/j.mtbio.2022.100215

[21]

S. You, Z.J. Luo, N.M. Cheng, et al. Magnetically responsive nanoplatform targeting circrna circ_0058051 inhibits hepatocellular carcinoma progression. Drug Delivery and Translational Research, 2023, 13(3): 782−794. https://doi.org/10.1007/s13346-022-01237-z

[22]

N.A. Gharibkandi, M. Zuk, F.Z.B. Muftuler, et al. Au-198-coated superparamagnetic iron oxide nanoparticles for dual magnetic hyperthermia and radionuclide therapy of hepatocellular carcinoma. International Journal of Molecular Sciences, 2023, 24(6): 5282. https://doi.org/10.3390/ijms24065282

[23]
R. Boettger, G. Pauli, P.-H. Chao, et al. Lipid-based nanoparticle technologies for liver targeting. Advanced Drug Delivery Reviews, 2020, 154–155: 79–101.
[24]

N.M.K. Paramjot, H. Kapahi, S. Kumar, et al. Role of polymer-drug conjugates in organ-specific delivery systems. Journal of Drug Targeting, 2015, 23(5): 387−416. https://doi.org/10.3109/1061186x.2015.1016436

[25]

R. Rohilla, T. Garg, A.K. Goyal, et al. Herbal and polymeric approaches for liver-targeting drug delivery: Novel strategies and their significance. Drug Delivery, 2016, 23(5): 1645−1661. https://doi.org/10.3109/10717544.2014.945018

[26]

K.W. Yang, X.R. Li, Z.L. Yang, et al. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: in vitro and in vivo characterization. Journal of Biomedical Materials Research Part A, 2009, 88A(1): 140−148. https://doi.org/10.1002/jbm.a.31866

[27]

Q. Wang, L. Zhang, W. Hu, et al. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine-Nanotechnology Biology and Medicine, 2010, 6(2): 371−381. https://doi.org/10.1016/j.nano.2009.07.006

[28]

E. Ahmadian, D. Janas, A. Eftekhari, et al. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. Chemosphere, 2022, 302: 134826. https://doi.org/10.1016/j.chemosphere.2022.134826

[29]

W.C. Liu, Y. Pan, Y.T. Zhong, et al. A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chemical Engineering Journal, 2021, 412: 127899. https://doi.org/10.1016/j.cej.2020.127899

[30]

Y.-N. Zhang, W. Poon, A.J. Tavares, et al. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. Journal of Controlled Release, 2016, 240: 332−348. https://doi.org/10.1016/j.jconrel.2016.01.020

[31]

K.K. Comfort, E.I. Maurer, L.K. Braydich-Stolle, et al. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano, 2011, 5(12): 10000−10008. https://doi.org/10.1021/nn203785a

[32]

J.F. Guo, K. Rahme, Y. He, et al. Gold nanoparticles enlighten the future of cancer theranostics. International Journal of Nanomedicine, 2017, 12: 6131−6152. https://doi.org/10.2147/ijn.S140772

[33]

D.S. Salem, M.A. Sliem, M. El-Sesy, et al. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. Journal of Photochemistry and Photobiology B:Biology, 2018, 182: 92−99. https://doi.org/10.1016/j.jphotobiol.2018.03.024

[34]

M.A. Dar, A. Ingle, M. Rai. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp evaluated singly and in combination with antibiotics. Nanomedicine:Nanotechnology Biology and Medicine, 2013, 9(1): 105−110. https://doi.org/10.1016/j.nano.2012.04.007

[35]

S. Gurunathan, J.H. Park, J.W. Han, et al. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. International Journal of Nanomedicine, 2022, 10: 4203−4222. https://doi.org/10.2147/ijn.S395879

[36]

E. Ahmadian, S. M. Dizaj, E. Rahimpour, et al. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Materials Science and Engineering C-Materials for Biological Applications, 2018, 93: 465−471. https://doi.org/10.1016/j.msec.2018.08.027

[37]

P. Cherukuri, E.S. Glazer, S.A. Curleya. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 2010, 62(3): 339−345. https://doi.org/10.1016/j.addr.2009.11.006

[38]

C. Tomuleasa, O. Soritau, A. Orza, et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. Journal of Gastrointestinal and Liver Diseases, 2012, 21(2): 187−196.

[39]

C.J. Gannon, C.R. Patra, R. Bhattacharya, et al. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. Journal of nanobiotechnology, 2008, 6: 2. https://doi.org/10.1186/1477-3155-6-2

[40]

F. Xu, L.L. Zhang, Y.X. Xu, et al. Hypermethylation of scand3 and myo1g gene are potential diagnostic biomarkers for hepatocellular carcinoma. Cancers, 2020, 12(8): 2332. https://doi.org/10.3390/cancers12082332

[41]

Y.S. Pan, H.R. Chen, J. Yu. Biomarkers in hepatocellular carcinoma: Current status and future perspectives. Biomedicines, 2020, 8(12): 576. https://doi.org/10.3390/biomedicines8120576

[42]

H. Wu, M.-D. Wang, L. Liang, et al. Nanotechnology for hepatocellular carcinoma: From surveillance, diagnosis to management. Small, 2021, 17(6): e2005236. https://doi.org/10.1002/smll.202005236

[43]

N.D. Parikh, A.S. Mehta, A.G. Singal, et al. Biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiology Biomarkers &Prevention, 2020, 29(12): 2495−2503. https://doi.org/10.1158/1055-9965.Epi-20-0005

[44]

W. Li, M. Chen, J.T. Liang, et al. Electrochemical aptasensor for analyzing alpha-fetoprotein using RGO-CS-Fc nanocomposites integrated with gold-platinum nanoparticles. Analytical Methods, 2020, 12(41): 4956−4966. https://doi.org/10.1039/d0ay01465f

[45]

G. Stefan, O. Hosu, K. De Wael, et al. Aptamers in biomedicine: Selection strategies and recent advances. Electrochimica Acta, 2021, 376: 137994. https://doi.org/10.1016/j.electacta.2021.137994

[46]

G. Li, H. Feng, X. Shi, et al. Highly sensitive electrochemical aptasensor for glypican-3 based on reduced graphene oxide-hemin nanocomposites modified on screen-printed electrode surface. Bioelectrochemistry, 2021, 138: 107696. https://doi.org/10.1016/j.bioelechem.2020.107696

[47]

X.H. Shi, M. Chen, H.F. Feng, et al. Glypican-3 electrochemical aptasensor based on reduced graphene oxide-chitosan-ferrocene deposition of platinum-palladium bimetallic nanoparticles. Journal of Applied Electrochemistry, 2021, 51(5): 781−794. https://doi.org/10.1007/s10800-021-01534-4

[48]

J.C. Li, K.Y. Pu. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Accounts of Chemical Research, 2020, 53(4): 752−762. https://doi.org/10.1021/acs.accounts.9b00569

[49]

X.Y. Chen, Q. Zhang, J.L. Li, et al. Rattle-structured rough nanocapsules with in-situ-formed reil gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano, 2018, 12(6): 5646−5656. https://doi.org/10.1021/acsnano.8b01440

[50]

M.L. Viger, G. Collet, J. Lux, et al. Distinct on/off fluorescence signals from dual-responsive activatable nanoprobes allows detection of inflammation with improved contrast. Biomaterials, 2017, 133: 119−131. https://doi.org/10.1016/j.biomaterials.2017.03.042

[51]

C. Wen, R. Cheng, T. Gong, et al. Beta-cyclodextrin-cholic acid-hyaluronic acid polymer coated fe3o4-graphene oxide nanohybrids as local chemo-photothermal synergistic agents for enhanced liver tumor therapy. Colloids and Surfaces B-Biointerfaces, 2021, 199: 111510. https://doi.org/10.1016/j.colsurfb.2020.111510

[52]

W.L. Jia, Y.H. Han, X.Y. Mao, et al. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Advances, 2022, 12(48): 31068−31082. https://doi.org/10.1039/d2ra05127c

[53]

B. Baig, S.A. Halim, A. Farrukh, et al. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomedicine &Pharmacotherapy, 2019, 116: 108852. https://doi.org/10.1016/j.biopha.2019.108852

[54]

E. Meijer, H. Kromhout, D. Heederik. Respiratory effects of exposure to low levels of concrete dust containing crystalline silica. American Journal of Industrial Medicine, 2001, 40(2): 133−140. https://doi.org/10.1002/ajim.1080.abs

[55]

I.-Y. Kim, E. Joachim, H. Choi, et al. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine-Nanotechnology Biology and Medicine, 2015, 11(6): 1407−1416. https://doi.org/10.1016/j.nano.2015.03.004

[56]

I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 2008, 60(11): 1278−1288. https://doi.org/10.1016/j.addr.2008.03.012

[57]

C. Barbe, J. Bartlett, L.G. Kong, et al. Silica particles: A novel drug-delivery system. Advanced Materials, 2004, 16(21): 1959−1966. https://doi.org/10.1002/adma.200400771

[58]

N. Pal, J.-H. Lee, E.-B. Cho. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials, 2020, 10(11): 2122. https://doi.org/10.3390/nano10112122

[59]

L. Tang, J. Cheng. Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8(3): 290−312. https://doi.org/10.1016/j.nantod.2013.04.007

[60]

C.E. Ashley, E.C. Carnes, G.K. Phillips, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 2011, 10(5): 389−397. https://doi.org/10.1038/nmat3042

[61]

C.E. Ashley, E.C. Carnes, K.E. Epler, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano, 2012, 6(3): 2174−2188. https://doi.org/10.1021/nn204102q

[62]

J. Bruix, M. Sherman. Management of hepatocellular carcinoma: An update. Hepatology, 2011, 53(3): 1020−1022. https://doi.org/10.1002/hep.24199

[63]

C.E. Ashley, E.C. Carnes, G.K. Phillips, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano, 2011, 5(7): 5729−5745. https://doi.org/10.1021/nn201397z

[64]

Y. Li, Y. Hu, J. Xiao, et al. Investigation of sp94 peptide as a specific probe for hepatocellular carcinoma imaging and therapy. Scientific Reports, 2016, 6: 33511. https://doi.org/10.1038/srep33511

[65]

C. Andreou, V. Neuschmelting, D.-F. Tschaharganeh, et al. Imaging of liver tumors using surface-enhanced raman scattering nanoparticles. ACS Nano, 2016, 10(5): 5015−5026. https://doi.org/10.1021/acsnano.5b07200

[66]

X.-H. Ma, S. Wang, S.-Y. Liu, et al. Development and in vitro study of a bi-specific magnetic resonance imaging molecular probe for hepatocellular carcinoma. World Journal of Gastroenterology, 2019, 25(24): 3030−3043. https://doi.org/10.3748/wjg.v25.i24.3030

[67]

G. Tom, S. Philip, R. Isaac, et al. Preparation of an efficient and safe polymeric-magnetic nanoparticle delivery system for sorafenib in hepatocellular carcinoma. Life Sciences, 2018, 206: 10−21. https://doi.org/10.1016/j.lfs.2018.04.046

[68]

S. Gavas, S. Quazi, T.M. Karpinski. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Research Letters, 2021, 16(1): 173. https://doi.org/10.1186/s11671-021-03628-6

[69]

F. Graur, A. Puia, E.I. Mois, et al. Nanotechnology in the diagnostic and therapy of hepatocellular carcinoma. Materials, 2022, 15(11): 3893. https://doi.org/10.3390/ma15113893

[70]

G. Dranoff. Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 2004, 4(1): 11−22. https://doi.org/10.1038/nrc1252

[71]

D. Briukhovetska, J. Dorr, S. Endres, et al. Interleukins in cancer: From biology to therapy. Nature Reviews Cancer, 2021, 21(8): 481−499. https://doi.org/10.1038/s41568-021-00363-z

[72]

D.J. Propper, F.R. Balkwill. Harnessing cytokines and chemokines for cancer therapy. Nature Reviews Clinical Oncology, 2022, 19(4): 237−253. https://doi.org/10.1038/s41571-021-00588-9

[73]

C. Hutmacher, D. Neri. Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Advanced Drug Delivery Reviews, 2019, 141: 67−91. https://doi.org/10.1016/j.addr.2018.09.002

[74]

Z. Yang, D. Gao, J. Zhao, et al. Thermal immuno-nanomedicine in cancer. Nature Reviews Clinical Oncology, 2023, 20(2): 116−134. https://doi.org/10.1038/s41571-022-00717-y

[75]

V.P. Torchilin. Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(1): 1−16. https://doi.org/10.1007/s11095-006-9132-0

[76]

P.R. Sarika, N.R. James, P.R.A. Kumar, et al. Gum Arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydrate Polymers, 2015, 134: 167−174. https://doi.org/10.1016/j.carbpol.2015.07.068

[77]

W.S. Blaner, Y. Li, P.-J. Brun, et al. Vitamin a absorption, storage and mobilization. Sub-cellular Biochemistry, 2016, 81: 95−125.

[78]

J.-B. Qiao, Q.-Q. Fan, L. Xing, et al. Vitamin a-decorated biocompatible micelles for chemogene therapy of liver fibrosis. Journal of Controlled Release, 2018, 283: 113−125. https://doi.org/10.1016/j.jconrel.2018.05.032

[79]

D. Hanahan, R. A. Weinberg. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646−674. https://doi.org/10.1016/j.cell.2011.02.013

[80]

A. Khan, K. A. Alamry. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydrate Research, 2021, 506: 108368. https://doi.org/10.1016/j.carres.2021.108368

[81]

S.M. Moghimi, A.C. Hunter, J.C. Murray. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 2001, 53(2): 283−318.

[82]
L.F. Qi, Z. Xu, M. Chen. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. European Journal of Cancer, 2007, 43(1): 184–193.
[83]

N.K. Jain, S.K. Jain. Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin. AAPS Pharmscitech, 2010, 11(2): 686−697. https://doi.org/10.1208/s12249-010-9422-z

[84]

Y.L. Xu, Z.S. Wen, Z.R. Xu. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism. Anticancer Research, 2009, 29(12): 5103−5109.

[85]
M.-R. Cheng, Q. Li, T. Wan, et al. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World Journal of Gastroenterology, 2012, 18(42): 6076.
[86]

T.S. Anirudhan, Binusreejayan. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. International Journal of Biological Macromolecules, 2016, 88: 222−235. https://doi.org/10.1016/j.ijbiomac.2016.03.040

[87]

R. El-Kharrag, A. Amin, S. Hisaindee, et al. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. International Journal of Oncology, 2017, 50(1): 212−222. https://doi.org/10.3892/ijo.2016.3769

[88]

G. Bozzuto, A. Molinari. Liposomes as nanomedical devices. International Journal of Nanomedicine, 2015, 10(1): 975−999. https://doi.org/10.2147/ijn.S68861

[89]

J.L. Ju, Y.H. Wu, W. He, et al. Nanocarriers for active ingredients of chinese medicine (AIFCM) used in gastrointestinal cancer therapy. Journal of Biomedical Nanotechnology, 2022, 18(10): 2279−2314. https://doi.org/10.1166/jbn.2022.3446

[90]

M. Kim, M. Jeong, S. Hur, et al. Engineered ionizable lipid nanoparticles for targeted delivery of rna therapeutics into different types of cells in the liver. Science Advances, 2021, 7(9): eabf4398. https://doi.org/10.1126/sciadv.abf4398

[91]

S. Maritim, P. Boulas, Y. Lin. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. International Journal of Pharmaceutics, 2021, 592: 120051. https://doi.org/10.1016/j.ijpharm.2020.120051

[92]

M.S. Muthu, D.T. Leong, L. Mei, et al. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014, 4(6): 660−677. https://doi.org/10.7150/thno.8698

[93]

A.C. Marques, P.C.C. Costa, S. Velho, et al. Lipid nanoparticles functionalized with antibodies for anticancer drug therapy. Pharmaceutics, 2023, 15(1): 216. https://doi.org/10.3390/pharmaceutics15010216

[94]

L. Moreira, N.M. Guimarães, S. Pereira, et al. Liposome delivery of nucleic acids in bacteria: Toward in vivo labeling of human microbiota. ACS Infectious Diseases, 2022, 8(7): 1218−1230. https://doi.org/10.1021/acsinfecdis.1c00601

[95]

J. Cui, Z. Wen, W. Zhang, et al. Recent advances in oral peptide or protein-based drug liposomes. Pharmaceuticals, 2022, 15(9): 1072. https://doi.org/10.3390/ph15091072

[96]

X. Zhang, C.C. Lin, W.K. Chan, et al. Dual-functional liposomes with carbonic anhydrase IX antibody and BR2 peptide modification effectively improve intracellular delivery of cantharidin to treat orthotopic hepatocellular carcinoma mice. Molecules, 2019, 24(18): 3332. https://doi.org/10.3390/molecules24183332

[97]
T.Z. Yang, T. Bantegui, K. Pike, et al. In vitro evaluation of optimized liposomes for delivery of small interfering RNA. Journal of Liposome Research, 2014, 24(4): 270–279.
[98]

L. Dutta, B. Mukherjee, T. Chakraborty, et al. Lipid-based nanocarrier efficiently delivers highly water soluble drug across the blood–brain barrier into brain. Drug Delivery, 2018, 25(1): 504−516. https://doi.org/10.1080/10717544.2018.1435749

[99]

N.R. Abdol Wahab, M.M.R. Meor Mohd Affandi, S. Fakurazi, et al. Nanocarrier system: State-of-the-art in oral delivery of astaxanthin. Antioxidants, 2022, 11(9): 1676. https://doi.org/10.3390/antiox11091676

[100]

A. da Silva Gomes, F.M. Pascoal Reis, I.P. Ceravolo, et al. Effectiveness of free and liposome-entrapped antitumoral drugs against hepatocellular carcinoma: A comparative in vitro study. Biointerface Research in Applied Chemistry, 2023, 13(2): 122. https://doi.org/10.33263/briac132.122

[101]

C.H. Albertsen, J.A. Kulkarni, D. Witzigmann, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, 2022, 188: 114416. https://doi.org/10.1016/j.addr.2022.114416

[102]

X.B. Wei, D.P. Yang, Z. Xing, et al. Quercetin loaded liposomes modified with galactosylated chitosan prevent LPS/D-GalN induced acute liver injury. Materials Science &Engineering C-Materials for Biological Applications, 2021, 131: 112527. https://doi.org/10.1016/j.msec.2021.112527

[103]

T. Fukuta, S. Hirai, T. Yoshida, et al. Protective effect of antioxidative liposomes Co-encapsulating astaxanthin and capsaicin on CCl4-induced liver injury. Biological &Pharmaceutical Bulletin, 2020, 43(8): 1272−1274. https://doi.org/10.1248/bpb.b20-00116

[104]

Y.-M. Zhang, X. Xu, Q.L. Yu, et al. Drug displacement strategy for treatment of acute liver injury with cyclodextrin-liposome nanoassembly. iScience, 2019, 15: 223−233. https://doi.org/10.1016/j.isci.2019.04.029

[105]

S.I. Kim, D. Shin, T.H. Choi, et al. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Molecular Therapy, 2007, 15: 1145−1152. https://doi.org/10.1038/sj.mt.6300168

[106]

H. Yusuf, E.K.D.D. Novitasari, N.L.W. Purnami, et al. Formulation design and cell cytotoxicity of curcumin-loaded liposomal solid gels for anti-hepatitis C virus. Advances in Pharmacological and Pharmaceutical Sciences, 2022, 2022: 3336837. https://doi.org/10.1155/2022/3336837

[107]
W.M. Xu, Y.J. Niu, X. Ai, et al. Liver-targeted nanoparticles facilitate the bioavailability and anti-HBV efficacy of baicalin in vitro and in vivo. Biomedicines, 2022, 10(4): 900.
[108]

J. Lee, J. Byun, G. Shim, et al. Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis. Nature Communications, 2022, 13: 1516. https://doi.org/10.1038/s41467-022-29186-8

[109]

Y. Wang, R.G. MacDonald, G. Thinakaran, et al. Insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor in neurodegenerative diseases. Molecular Neurobiology, 2017, 54(4): 2636−2658. https://doi.org/10.1007/s12035-016-9849-7

[110]

J.M. Luk, Q.-S. Zhang, N.P. Lee, et al. Hepatic stellate cell-targeted delivery of m6p-hsa-glycyrrhetinic acid attenuates hepatic fibrogenesis in a bile duct ligation rat model. Liver International, 2007, 27(4): 548−557. https://doi.org/10.1111/j.1478-3231.2007.01452.x

[111]

N.-L. Chai, Q. Fu, H. Shi, et al. Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells. World Journal of Gastroenterology, 2012, 18(31): 4199−4206. https://doi.org/10.3748/wjg.v18.i31.4199

[112]

S.-L. Du, H. Pan, W.-Y. Lu, et al. Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting drug therapy of hepatic fibrosis in rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 322(2): 560−568. https://doi.org/10.1124/jpet.107.122481

[113]

A.A. D'Souza, P.V. Devarajan. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. Journal of Controlled Release, 2015, 203: 126−139. https://doi.org/10.1016/j.jconrel.2015.02.022

[114]

C.A. Sanhueza, M.M. Baksh, B. Thuma, et al. Efficient liver targeting by polyvalent display of a compact ligand for the asialoglycoprotein receptor. Journal of the American Chemical Society, 2017, 139(9): 3528−3536. https://doi.org/10.1021/jacs.6b12964

[115]

M. Wang, Z.J. Li, F.Y. Liu, et al. Development of asialoglycoprotein-mediated hepatocyte-targeting antitumor prodrugs triggered by glutathione. Journal of Medicinal Chemistry, 2021, 64(19): 14793−14808. https://doi.org/10.1021/acs.jmedchem.1c01365

[116]

A. Akinc, M.A. Maier, M. Manoharan, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 2019, 14(12): 1084−1087. https://doi.org/10.1038/s41565-019-0591-y

[117]

D. Sarker, R. Plummer, T. Meyer, et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: A first-in-human, multicenter, open-label, phase I trial. Clinical Cancer Research, 2020, 26(15): 3936−3946. https://doi.org/10.1158/1078-0432.Ccr-20-0414

[118]

N. Sakamoto, K. Ogawa, G. Suda, et al. Clinical phase 1b study results for safety, pharmacokinetics and efficacy of ND-L02-s0201, a novel targeted lipid nanoparticle delivering HSP47 SIRNA for the treatment of Japanese patients with advanced liver fibrosis. Journal of Hepatology, 2018, 68: S242. https://doi.org/10.1016/S0168-8278(18)30701-3

[119]

E.J. Lawitz, D.E. Shevell, G.S. Tirucherai, et al. BMS-986263 in patients with advanced hepatic fibrosis: 36-week results from a randomized, placebo-controlled phase 2 trial. Hepatology, 2022, 75(4): 912−923. https://doi.org/10.1002/hep.32181

[120]

D. S. Hong, Y. K. Kang, M. Borad, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer, 2020, 122(11): 1630−1637. https://doi.org/10.1038/s41416-020-0802-1

[121]

M. Regenold, P. Bannigan, J.C. Evans, et al. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine-Nanotechnology Biology and Medicine, 2022, 40: 102484. https://doi.org/10.1016/j.nano.2021.102484

[122]

A. Lakshminarayanan, B.U. Reddy, N. Raghav, et al. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. Nanoscale, 2015, 7: 16921−16931. https://doi.org/10.1039/C5NR02898A

[123]
D. Bhadra, A.K. Yadav, S. Bhadra, et al. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. International Journal of Pharmaceutics, 2005, 295(1–2): 221233.
[124]

H. Katsumi, M. Nishikawa, R. Hirosaki, et al. Development of PEGylated cysteine-modified lysine dendrimers with multiple reduced thiols to prevent hepatic ischemia/reperfusion injury. Molecular Pharmaceutics, 2016, 13(8): 2867−2873. https://doi.org/10.1021/acs.molpharmaceut.6b00557

[125]

P.K. Ma, Y. Sun, J.H. Chen, et al. Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM–camptothecin conjugate. Drug Delivery, 2018, 25(1): 153−165. https://doi.org/10.1080/10717544.2017.1419511

[126]

Y. Cong, B.Y. Shi, Y.Q. Lu, et al. One-step conjugation of glycyrrhetinic acid to cationic polymers for high-performance gene delivery to cultured liver cell. Scientific Reports, 2016, 6: 21891. https://doi.org/10.1038/srep21891

[127]

G.L. Ma, X. Du, J. Zhu, et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. Journal of Drug Delivery Science and Technology, 2021, 63: 102493. https://doi.org/10.1016/j.jddst.2021.102493

[128]

M.A. Sherwani, S. Tufail, A.A. Khan, et al. Dendrimer-PLGA based multifunctional immuno-nanocomposite mediated synchronous and tumor selective delivery of siRNA and cisplatin: Potential in treatment of hepatocellular carcinoma. RSC Advances, 2015, 5(49): 39512−39531. https://doi.org/10.1039/c5ra03651h

[129]

S. Sunoqrot, J. Bugno, D. Lantvit, et al. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. Journal of Controlled Release, 2014, 191: 115−122. https://doi.org/10.1016/j.jconrel.2014.05.006

[130]

R. Sharma, J.E. Porterfield, H.-T. An, et al. Rationally designed galactose dendrimer for hepatocyte-specific targeting and intracellular drug delivery for the treatment of liver disorders. Biomacromolecules, 2021, 22(8): 3574−3589. https://doi.org/10.1021/acs.biomac.1c00649

[131]

C.J. Sun, H.Y. Lin, X.Q. Gong, et al. DOTA-branched organic frameworks as giant and potent metal chelators. Journal of the American Chemical Society, 2020, 142(1): 198−206. https://doi.org/10.1021/jacs.9b09269

[132]

H. Dong, L. Tian, M. Gao, et al. Promising galactose-decorated biodegradable poloxamer 188-PLGA diblock copolymer nanoparticles of resibufogenin for enhancing liver cancer therapy. Drug Delivery, 2017, 24(1): 1302−1316. https://doi.org/10.1080/10717544.2017.1373165

[133]

M. Hołota, S. Michlewska, S. Garcia-Gallego, et al. Combination of copper metallodendrimers with conventional antitumor drugs to combat cancer in in vitro models. International Journal of Molecular Sciences, 2023, 24(4): 4076. https://doi.org/10.3390/ijms24044076

[134]

B.F. Grześkowiak, D. Maziukiewicz, A. Kozłowska, et al. Polyamidoamine dendrimers decorated multifunctional polydopamine nanoparticles for targeted chemo- and photothermal therapy of liver cancer model. International Journal of Molecular Sciences, 2021, 22(2): 738. https://doi.org/10.3390/ijms22020738

[135]

R. Singh, S. Kumar. Cancer targeting and diagnosis: Recent trends with carbon nanotubes. Nanomaterials, 2022, 12(13): 2283. https://doi.org/10.3390/nano12132283

[136]

H. Gong, R. Peng, Z. Liu. Carbon nanotubes for biomedical imaging: The recent advances. Advanced Drug Delivery Reviews, 2013, 65(15): 1951−1963. https://doi.org/10.1016/j.addr.2013.10.002

[137]

H.A.F.M. Hassan, S.S. Diebold, L.A. Smyth, et al. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. Journal of Controlled Release, 2019, 297: 79−90. https://doi.org/10.1016/j.jconrel.2019.01.017

[138]

K. Wojtera, M. Walczak, L. Pietrzak, et al. Synthesis of functionalized carbon nanotubes for fluorescent biosensors. Nanotechnology Reviews, 2020, 9(1): 1237−1244. https://doi.org/10.1515/ntrev-2020-0096

[139]

K. Balasubramanian. Label-free indicator-free nucleic acid biosensors using carbon nanotubes. Engineering in Life Sciences, 2012, 12(2): 121−130. https://doi.org/10.1002/elsc.201100055

[140]

R. Singh, S.V. Torti. Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65(15): 2045−2060. https://doi.org/10.1016/j.addr.2013.08.001

[141]

S.P. Yu, Q. Li, J.L. Wang, et al. A targeted drug delivery system based on carbon nanotubes loaded with lobaplatin toward liver cancer cells. Journal of Materials Research, 2018, 33(17): 2565−2575. https://doi.org/10.1557/jmr.2018.197

[142]

H.J. Ji, V. Nava, Y. Yang, et al. Multifocal 1064  nm Raman imaging of carbon nanotubes. Optics Letters, 2020, 45(18): 5132−5135. https://doi.org/10.1364/ol.402983

[143]

S. Nikazar, M. Barani, A. Rahdar, et al. Photo- and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications. ChemistrySelect, 2020, 5(40): 12590−12609. https://doi.org/10.1002/slct.202002978

[144]

P.H. Danielsen, K.M. Bendtsen, K.B. Knudsen, et al. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Particle and Fibre Toxicology, 2021, 18(1): 40. https://doi.org/10.1186/s12989-021-00432-z

[145]

H.W. Lu, Y.J. Xu, R.R. Qiao, et al. A novel clustered SPIO nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy. Nano Research, 2020, 13(8): 2216−2225. https://doi.org/10.1007/s12274-020-2839-0

[146]

G.M. Neelgund, M.C. Okolie, F.K. Williams, et al. Ag2S nanocrystallites deposited over polyamidoamine grafted carbon nanotubes: An efficient NIR active photothermal agent. Materials Chemistry and Physics, 2019, 234: 32−37. https://doi.org/10.1016/j.matchemphys.2019.05.040

[147]

L.-L. Meng, T.-T. Song, X. Mao. Novel immunochromatographic assay on cotton thread based on carbon nanotubes reporter probe. Talanta, 2017, 167: 379−384. https://doi.org/10.1016/j.talanta.2017.02.023

[148]

D.H. Hu, L.N. Yang, S.M. Deng, et al. Development of nanosensor by bioorthogonal reaction for multi-detection of the biomarkers of hepatocellular carcinoma. Sensors and Actuators B:Chemical, 2021, 334: 129653. https://doi.org/10.1016/j.snb.2021.129653

[149]

Y.S. Guo, X.F. Zheng, T.T. Gai, et al. Co-biomembrane-coated Fe3O4/MnO2 multifunctional nanoparticles for targeted delivery and enhanced chemodynamic/photothermal/chemo therapy. Chemical Communications, 2021, 57(47): 5754−5757. https://doi.org/10.1039/d1cc01375k

[150]
J.J. Liu, Z.Y. Liu, D.C. Wu. Multifunctional hypoxia imaging nanoparticles: Multifunctional tumor imaging and related guided tumor therapy. International Journal of Nanomedicine, 2019, 14: 707–719.
[151]

F.-F. Cheng, P.P. Sun, W.-W. Xiong, et al. Multifunctional titanium phosphate nanoparticles for site-specific drug delivery and real-time therapeutic efficacy evaluation. The Analyst, 2019, 144(9): 3103−3110. https://doi.org/10.1039/c8an02450b

[152]

C. Wang, S.Q. Chen, L. Bao, et al. Size-controlled preparation and behavior study of phospholipid–calcium carbonate hybrid nanoparticles. International Journal of Nanomedicine, 2020, 15: 4049−4062. https://doi.org/10.2147/ijn.S237156

[153]

K. Hayashi, T. Maruhashi, W. Sakamoto, et al. Organic–inorganic hybrid hollow nanoparticles suppress oxidative stress and repair damaged tissues for treatment of hepatic fibrosis. Advanced Functional Materials, 2018, 28(13): 1706332. https://doi.org/10.1002/adfm.201706332

[154]

A.A. Vodyashkin, P. Kezimana, A.A. Vetcher, et al. Biopolymeric nanoparticles–multifunctional materials of the future. Polymers, 2022, 14(11): 2287. https://doi.org/10.3390/polym1411228

[155]

B. Bakhshi, M.H. Enayati, S. Labbaf. Synthesis, characterization, and optimization of Co-, Mn-, and Zn-substituted ferrite nanoparticles and nanoclusters for cancer theranostic applications. Applied Nanoscience, 2022, 12(6): 1977−1991. https://doi.org/10.1007/s13204-022-02421-w

[156]

Y.H. Zhou, Q.Q. Yu, X.Y. Qin, et al. Improving the anticancer efficacy of laminin receptor-specific therapeutic ruthenium nanoparticles (RuBB-loaded EGCG-RuNPs) via ROS-dependent apoptosis in SMMC-7721 cells. ACS Applied Materials &Interfaces, 2016, 8(24): 15000−15012. https://doi.org/10.1021/acsami.5b02261

[157]

C.-H. Liu, K.-M. Chan, T. Chiang, et al. Dual-functional nanoparticles targeting CXCR4 and delivering antiangiogenic siRNA ameliorate liver fibrosis. Molecular Pharmaceutics, 2016, 13(7): 2253−2262. https://doi.org/10.1021/acs.molpharmaceut.5b00913

[158]

C. Jin, L. Bai, S.Q. Wang. Multifunctional nanoparticles for targeting liver cancer stem cells and efficient endocytosis. Chemical Papers, 2023, 77(3): 1395−1403. https://doi.org/10.1007/s11696-022-02566-6

[159]

Y.D., Zhou, K. Vinothini, F.F. Dou, et al. Hyper-branched multifunctional carbon nanotubes carrier for targeted liver cancer therapy. Arabian Journal of Chemistry, 2022, 15(3): 103649. https://doi.org/10.1016/j.arabjc.2021.103649

[160]

X.Q. Peng, G. Lin, Y. Zeng, et al. Mesoporous silica nanoparticle-based imaging agents for hepatocellular carcinoma detection. Frontiers in Bioengineering and Biotechnology, 2021, 9: 749381. https://doi.org/10.3389/fbioe.2021.749381

[161]

Z.W. Zhang, F.-L. Zhou, G.-L. Davies, et al. Theranostics for MRI-guided therapy: Recent developments. View, 2022, 3(3): 20200134. https://doi.org/10.1002/viw.20200134

[162]

Y.J. Wu, Z.Q. Sun, J.F. Song, et al. Preparation of multifunctional mesoporous SiO2 nanoparticles and anti-tumor action. Nanotechnology, 2023, 34(5): 055101. https://doi.org/10.1088/1361-6528/ac9e5f

[163]

X.Q. Chi, R.Y. Zhang, T. Zhao, et al. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology, 2019, 30(17): 175101. https://doi.org/10.1088/1361-6528/aaff9e

[164]

Z.X. He, K. Bao, J.B. Jian, et al. Biotin-targeted multifunctional nanoparticles encapsulating 10-hydroxycamptothecin and apoptin plasmid for synergistic hepatocellular carcinoma treatment. ACS Applied Polymer Materials, 2022, 4(1): 497−508. https://doi.org/10.1021/acsapm.1c01393

[165]

T. Sun, Y.Y. Kang, J. Liu, et al. Nanomaterials and hepatic disease: Toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. Journal of Nanobiotechnology, 2021, 19(1): 108. https://doi.org/10.1186/s12951-021-00843-2

[166]

Z.-Z. Chen, L.-C. Wang, D. Manoharan, et al. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep-seated hepatic tumors. Advanced Materials, 2019, 31(49): 1905087. https://doi.org/10.1002/adma.201905087

[167]

G.Q. Yan, J. Wang, L.F. Hu, et al. Stepwise targeted drug delivery to liver cancer cells for enhanced therapeutic efficacy by galactose-grafted, ultra-pH-sensitive micelles. Acta Biomaterialia, 2017, 51: 363−373. https://doi.org/10.1016/j.actbio.2017.01.031

[168]

M.S. Lee, N.W. Kim, J.E. Lee, et al. Targeted cellular delivery of robust enzyme nanoparticles for the treatment of drug-induced hepatotoxicity and liver injury. Acta Biomaterialia, 2018, 81: 231−241. https://doi.org/10.1016/j.actbio.2018.09.023

[169]

H.R. Tian, Y.K. Huang, J.L. He, et al. CD147 monoclonal antibody targeted reduction-responsive camptothecin polyphosphoester nanomedicine for drug delivery in hepatocellular carcinoma cells. ACS Applied Bio Materials, 2021, 4(5): 4422−4431. https://doi.org/10.1021/acsabm.1c00177

[170]
T. Shehata, K.I. Ogawara, K. Higaki, et al. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. International Journal of Pharmaceutics, 2008, 359(1/2): 272–279.
[171]

C.I. Colino, J.M. Lanao, C. Gutierrez-Millan. Targeting of hepatic macrophages by therapeutic nanoparticles. Frontiers in Immunology, 2020, 11: 218. https://doi.org/10.3389/fimmu.2020.00218

[172]
B. Du, Y. Li, X. Li, et al. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. International Journal of Pharmaceutics, 2010, 384(1/2): 140–147.
[173]

K. Vanaja, S. Salwa., S. N. Murthy, et al. Iontophoretic mediated intraarticular delivery of deformable liposomes of diclofenac sodium. Current Drug Delivery, 2021, 18(4): 421−432. https://doi.org/10.2174/1567201817666201014144708

[174]

N. Haider, S. Fatima, M. Taha, et al. Nanomedicines in diagnosis and treatment of cancer: An update. Current Pharmaceutical Design, 2020, 26(11): 1216−1231. https://doi.org/10.2174/1381612826666200318170716

[175]

J.R. Wu, Z.J. Zhang, C.X. Qiao, et al. Synthesis of monodisperse ZIF-67@CuSe@PVP nanoparticles for pH-responsive drug release and photothermal therapy. ACS Biomaterials Science &Engineering, 2022, 8(1): 284−292. https://doi.org/10.1021/acsbiomaterials.1c01124

[176]
K.J. Longmuir, S.M. Haynes, J.L. Baratta, et al. Liposomal delivery of doxorubicin to hepatocytes in vivo by targeting heparan sulfate. International Journal of Pharmaceutics, 2009, 382(1/2): 222–233.
[177]

A. Ueki, K. Un, Y. Mino, et al. Synthesis and evaluation of glyco-coated liposomes as drug carriers for active targeting in drug delivery systems. Carbohydrate Research, 2015, 405: 78−86. https://doi.org/10.1016/j.carres.2014.06.028

[178]

J.J. Tang, Q.T. Wang, Q.W. Yu, et al. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomaterialia, 2019, 83: 379−389. https://doi.org/10.1016/j.actbio.2018.11.002

[179]

J.M. Zhai, B.Y. Zhou, Y.H. An, et al. Galactosamine-conjugating zwitterionic block copolymer for reduction-responsive release and active targeted delivery of doxorubicin to hepatic carcinoma cells. Journal of Nanomaterials, 2020, 2020: 7863709. https://doi.org/10.1155/2020/7863709

[180]

F.-Q. Zhao, G.-F. Wang, D. Xu, et al. Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. International Journal of Biological Macromolecules, 2021, 168: 93−104. https://doi.org/10.1016/j.ijbiomac.2020.11.204

[181]

H. Hussain, I. Ali, D.J. Wang, et al. Glycyrrhetinic acid: A promising scaffold for the discovery of anticancer agents. Expert Opinion on Drug Discovery, 2021, 16(12): 1497−1516. https://doi.org/10.1080/17460441.2021.1956901

[182]

K. Mahmoud, S. Swidan, M. El-Nabarawi, et al. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: A comprehensive review on targeting and recent advances. Journal of Nanobiotechnology, 2022, 20: 109. https://doi.org/10.1186/s12951-022-01309-9

[183]
N. Leber, L. Kaps, A.T. Yang, et al. α-mannosyl-functionalized cationic nanohydrogel particles for targeted gene knockdown in immunosuppressive macrophages. Macromolecular Bioscience, 2019, 19(7): 1970019.
[184]

M.L. Wu, C.W. Zhang, M.D. Xie, et al. Compartmentally scavenging hepatic oxidants through AMPK/SIRT3-PGC1α axis improves mitochondrial biogenesis and glucose catabolism. Free Radical Biology and Medicine, 2021, 168: 117−128. https://doi.org/10.1016/j.freeradbiomed.2021.03.029

[185]

Y. Sato, Y. Kinami, K. Hashiba, et al. Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway. Journal of Controlled Release, 2020, 322: 217−226. https://doi.org/10.1016/j.jconrel.2020.03.006

[186]

H.L. Li, T. Herrmann, J. Seeßle, et al. Role of fatty acid transport protein 4 in metabolic tissues: Insights into obesity and fatty liver disease. Bioscience Reports, 2022, 42(6): BSR20211854. https://doi.org/10.1042/bsr20211854

[187]

S. Rose-John. Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Letters, 2022, 596(5): 557−566. https://doi.org/10.1002/1873-3468.14220

[188]

H.L. Wang, C.A. Thorling, X.W. Liang, et al. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. Journal of Materials Chemistry B, 2015, 3(6): 939−958. https://doi.org/10.1039/c4tb01611d

[189]

H. Malhi, R.J. Kaufman. Endoplasmic reticulum stress in liver disease. Journal of Hepatology, 2011, 54(4): 795−809. https://doi.org/10.1016/j.jhep.2010.11.005

[190]

X.-P. Zhang, X.-J. Chen, B.-Z. Li, et al. Active targeted janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence. Biomaterials, 2022, 281: 121362. https://doi.org/10.1016/j.biomaterials.2022.121362

[191]

S. Naahidi, M. Jafari, F. Edalat, et al. Biocompatibility of engineered nanoparticles for drug delivery. Journal of Controlled Release, 2013, 166(2): 182−194. https://doi.org/10.1016/j.jconrel.2012.12.013

[192]

R. Gref, Y. Minamitake, M.T. Peracchia, et al. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153): 1600−1603. https://doi.org/10.1126/science.8128245

[193]

H. Bahadar, F. Maqbool, K. Niaz, et al. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 2016, 20(1): 1−11. https://doi.org/10.7508/ibj.2016.01.001

[194]

S. Patnaik, B. Gorain, S. Padhi, et al. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 161: 100−119. https://doi.org/10.1016/j.ejpb.2021.02.010

[195]
Y. Wang, R.H. Ding, Z. Zhang, et al. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. International Journal of Pharmaceutics, 2021, 602: 120628.
[196]

S.L. Goldenberg, G. Nir, S.E. Salcudean. A new era: Artificial intelligence and machine learning in prostate cancer. Nature Reviews Urology, 2019, 16(7): 391−403. https://doi.org/10.1038/s41585-019-0193-3

[197]

J.N. Acosta, G.J. Falcone, P. Rajpurkar, et al. Multimodal biomedical AI. Nature Medicine, 2022, 28(9): 1773−1784. https://doi.org/10.1038/s41591-022-01981-2

[198]

J. Zhou, Z.Y. Zeng, L. Li. A meta-analysis of Watson for Oncology in clinical application. Scientific Reports, 2021, 11: 5792. https://doi.org/10.1038/s41598-021-84973-5

[199]

A.V. Singh, M.H.D. Ansari, D. Rosenkranz, et al. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Advanced Healthcare Materials, 2020, 9(17): e1901862. https://doi.org/10.1002/adhm.201901862

[200]

D.E. Jones, H. Ghandehari, J.C. Facelli. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Computer Methods and Programs in Biomedicine, 2016, 132: 93−103. https://doi.org/10.1016/j.cmpb.2016.04.025

[201]

A. Bakrania, N. Joshi, X. Zhao, et al. Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacological Research, 2023, 189: 106706. https://doi.org/10.1016/j.phrs.2023.106706

[202]

P. Bannigan, Z. Bao, R.J. Hickman, et al. Machine learning models to accelerate the design of polymeric long-acting injectables. Nature Communications, 2023, 14: 35. https://doi.org/10.1038/s41467-022-35343-w

Nano Biomedicine and Engineering
Pages 199-224
Cite this article:
Wu Y, Zhang J, He W, et al. Nanomaterials for Targeting Liver Disease: Research Progress and Future Perspectives. Nano Biomedicine and Engineering, 2023, 15(2): 199-224. https://doi.org/10.26599/NBE.2023.9290024

1593

Views

280

Downloads

7

Crossref

4

Scopus

Altmetrics

Received: 17 March 2023
Revised: 10 May 2023
Accepted: 05 June 2023
Published: 07 August 2023
© The Author(s) 2023.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return