Graphical Abstract

Excessive utilization of nanoparticles renders it necessary to produce safer and more secure nanoparticles while preserving their efficacy. In this study, Psidium guajava L. pulp extract-mediated silver nanoparticles (AgNPs) were synthesized, characterized, and further evaluated regarding their antioxidant potential. The green synthesized silver nanoparticles (G-AgNPs) showed a higher level of radical scavenging activity (RSA) (25.85%), hydrogen peroxide scavenging activity (34.34%), and ferric reducing power (0.28). The comparison of the control group (G1) with the various treatment groups (G2–G6) revealed that the levels of catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) were significantly different (P < 0.05). The levels of blood urea, uric acid, blood urea nitrogen (BUN), serum glutamic pyruvic transaminase (SGTP), serum creatinine, serum glutamic-oxaloacetic transaminase (SGOT), alkaline phosphatase, total bilirubin, and serum electrolytes were also evaluated. The results of clinical biochemistry also strengthened our hypothesis that G-AgNPs are less toxic than C-AgNPs. Finally, the histopathology of liver, kidney, and intestinal tissues indicated that green-synthesized AgNPs are relatively safer.
U. Chadha, P. Bhardwaj, R. Agarwal, et al. Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry, 2022, 109: 21−51. https://doi.org/10.1016/j.jiec.2022.02.010
H. Barabadi, H. Noqani, F. Ashouri, et al. Nanobiotechnological approaches in anticoagulant therapy: The role of bioengineered silver and gold nanomaterials. Talanta, 2023, 256: 124279. https://doi.org/10.1016/j.talanta.2023.124279
S. Majeed, M. Saravanan, M. Danish, et al. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta, 2023, 253: 124026. https://doi.org/10.1016/j.talanta.2022.124026
N. Talank, H. Morad, H. Barabadi, et al. Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Talanta, 2022, 243: 123374. https://doi.org/10.1016/j.talanta.2022.123374
H. Barabadi, A. Mohammadzadeh, H. Vahidi, et al. Penicillium chrysogenum-derived silver nanoparticles: Exploration of their antibacterial and biofilm inhibitory activity against the standard and pathogenic acinetobacter baumannii compared to tetracycline. Journal of Cluster Science, 2022, 33(5): 1929−1942. https://doi.org/10.1007/s10876-021-02121-5
S. Sarina, E.R. Waclawik, H. Zhu. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green chemistry, 2013, 15(7): 1814−1833. https://doi.org/10.1039/C3GC40450A
A.C. Burdușel, O. Gherasim, A.M. Grumezescu, et al. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 2018, 8(9): 681. https://doi.org/10.3390/nano8090681
M. Ovais, A.T. Khalil, N.U. Islam, et al. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 2018, 102(16): 6799−6814. https://doi.org/10.1007/s00253-018-9146-7
J.N. Moloney, T.G. Cotter. ROS signalling in the biology of cancer. Seminars in Cell &Developmental Biology, 2018, 80: 50−64. https://doi.org/10.1016/j.semcdb.2017.05.023
M. Dumont, M.F. Beal. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology &Medicine, 2011, 51(5): 1014−1026. https://doi.org/10.1016/j.freeradbiomed.2010.11.026
C.T. Hong, C.J. Hu, H.Y. Lin, et al. Effects of concomitant use of hydrogen water and photobiomodulation on Parkinson disease. Medicine, 2021, 100(4): e24191. https://doi.org/10.1097%2FMD.0000000000024191
A.J. Kattoor, N.V.K. Pothineni, D. Palagiri, et al. Oxidative stress in atherosclerosis. Current Atherosclerosis Reports, 2017, 19(11): 42. https://doi.org/10.1007/s11883-017-0678-6
J. Zou, Q. Fei, H. Xiao, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. Journal of Cellular Physiology, 2019, 234(10): 17690−17703. https://doi.org/10.1002/jcp.28395
E. Nur, B.J. Biemond, H.M. Otten, et al. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. American Journal of Hematology, 2011, 86(6): 484−489. https://doi.org/10.1002/ajh.22012
İ. Gulcin. Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 2020, 94(3): 651−715. https://doi.org/10.1007/s00204-020-02689-3
Z. Bedlovičová, I. Strapáč, M. Baláž, et al. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules, 2020, 25(14): 3191. https://doi.org/10.3390/molecules25143191
N.S.R. Rosman, N.A. Harun, I. Idris, et al. Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: biosynthesis, characterisation, and antibacterial applications. Heliyon, 2020, 6(11): e05462. https://doi.org/10.1016/j.heliyon.2020.e05462
R.J. Ruch, S.J. Cheng, J.E. Klaunig. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10(6): 1003−1008. https://doi.org/10.1093/carcin/10.6.1003
S. Marklund, G. Marklund. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 1974, 47(3): 469−474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
M. Javed, I. Ahmad, N. Usmani, et al. Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere, 2016, 151: 210−219. https://doi.org/10.1016/j.chemosphere.2016.02.080
Z. Guan, S. Ying, P.C. Ofoegbu, et al. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology &Innovation, 2022, 26: 102336. https://doi.org/10.1016/j.eti.2022.102336
S. Karimarji, S.G. Sabouri, A. Khorsandi. Nonlinear optical properties of size-variable silver nanoparticles dispersed in water and potassium bromide. Optical and Quantum Electronics, 2022, 54(2): 1−16. https://doi.org/10.1007/s11082-022-03526-w
M. Vanaja, G. Annadurai. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied nanoscience, 2013, 3(3): 217−223. https://doi.org/10.1007/s13204-012-0121-9
D. Bose, S. Chatterjee. Antibacterial activity of green synthesized silver nanoparticles using vasaka (Justicia adhatoda L.) leaf extract. Indian Journal of Microbiology, 2015, 55(2): 163−167. https://doi.org/10.1007/s12088-015-0512-1
V. Sandhiya, B. Gomathy, M.R. Sivasankaran, et al. Green synthesis of silver nanoparticles from Guava (Psidium guajava Linn.) leaf for antibacterial, antioxidant and cytotoxic activity on HT-29 cells (Colon cancer). Annals of the Romanian Society for Cell Biology, 2021, 25(6): 20148−20163.
V.-T. Hoang, N.X. Dinh, N.L.N. Trang, et al. Functionalized silver nanoparticles-based efficient colorimetric platform: Effects of surface capping agents on the sensing response of thiram pesticide in environmental water samples. Materials Research Bulletin, 2021, 139: 111278. https://doi.org/10.1016/j.materresbull.2021.111278
B. Sadeghi, F. Gholamhoseinpoor. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 134: 310−315. https://doi.org/10.1016/j.saa.2014.06.046
H. Shumail, S. Khalid, I. Ahmad, et al. Review on green synthesis of silver nanoparticles through plants. Endocrine,Metabolic &Immune Disorders - Drug Targets, 2021, 21(6): 994−1007. https://doi.org/10.2174/1871530320666200729153714
R. Sahadevan, P. Sivakumar, P. Karthika, et al. Biosynthesis of silver nanoparticles from active compounds Quacetin–3-OBd-galactopyranoside containing plant extract and its antifungal application. The Asian Journal of Phamaceutical and Clinical Research, 2013, 6: 76−79.
A. Yaqub, S.A. Ditta, K.M. Anjum, et al. Comparative analysis of toxicity induced by different synthetic silver nanoparticles in albino mice. BioNanoScience, 2019, 9(3): 553−563. https://doi.org/10.1007/s12668-019-00642-y
C. Sharmila, R. Ranjith Kumar, B. Chandar Shekar. Psidium guajava: A novel plant in the synthesis of silver nanoparticles for biomedical applications. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11(1): 341−345. https://doi.org/10.22159/ajpcr.2018.v11i1.21999
M.M.H. Khalil, E.H. Ismail, K.Z. El-Baghdady, et al. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 2014, 7(6): 1131−1139. https://doi.org/10.1016/j.arabjc.2013.04.007
M. Ijaz, M. Zafar, T. Iqbal. Green synthesis of silver nanoparticles by using various extracts: A review. Inorganic and Nano-Metal Chemistry, 2021, 51(5): 744−755. https://doi.org/10.1080/24701556.2020.1808680
N. Ahmad, S. Sharma, M.K. Alam, et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B:Biointerfaces, 2010, 81(1): 81−86. https://doi.org/10.1016/j.colsurfb.2010.06.029
V.A. Amaral, T.R. Alves, J.F. de Souza, et al. Phenolic compounds from Psidium guajava (Linn.) leaves: effect of the extraction-assisted method upon total phenolics content and antioxidant activity. Biointerface Research in Applied Chemistry, 2021, 11(2): 9346−9357. https://doi.org/10.33263/BRIAC112.93469357
P. Somchaidee, K. Tedsree. Green synthesis of high dispersion and narrow size distribution of zero-valent iron nanoparticles using guava leaf (Psidium guajava L) extract. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2018, 9(3): 035006. https://doi.org/10.1088/2043-6254/aad5d7
C. Osorio, J.G. Carriazo, H. Barbosa. Thermal and structural study of guava (Psidium guajava L) powders obtained by two dehydration methods. Química Nova, 2011, 34(4): 636−640. https://doi.org/10.1590/S0100-40422011000400016
N. Jayaprakash, J.J. Vijaya, K. Kaviyarasu, et al. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B:Biology, 2017, 169: 178−185. https://doi.org/10.1016/j.jphotobiol.2017.03.013
B. Khodadadi, M. Bordbar, M. Nasrollahzadeh. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. Journal of Colloid and Interface Science, 2017, 490: 1−10. https://doi.org/10.1016/j.jcis.2016.11.032
C.V. Restrepo, C.C. Villa. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology,Monitoring &Management, 2021, 15: 100428. https://doi.org/10.1016/j.enmm.2021.100428
J. Fabrega, S.R. Fawcett, J.C. Renshaw, et al. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environmental Science &Technology, 2009, 43(19): 7285−7290. https://doi.org/10.1021/es803259g
S.L. Palencia, A. Buelvas, M. Palencia. Interaction mechanisms of inorganic nanoparticles and biomolecular systems of microorganisms. Current Chemical Biology, 2015, 9(1): 10−22. https://doi.org/10.2174/2212796809666151022201811
S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering:C, 2014, 44: 278−284. https://doi.org/10.1016/j.msec.2014.08.031
Z. Ďuračková. Some Current insights into oxidative stress. Physiological Research, 2010, 59(4): 459−469. https://doi.org/10.33549/physiolres.931844
M.J. Piao, K.A. Kang, I.K. Lee, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters, 2011, 201(1): 92−100. https://doi.org/10.1016/j.toxlet.2010.12.010
S. Khorrami, A. Zarrabi, M. Khaleghi, et al. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 2018, 13: 8013−8024. https://doi.org/10.2147/IJN.S189295
K. Gudikandula, S. Charya Maringanti. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 2016, 11(9): 714−721. https://doi.org/10.1080/17458080.2016.1139196
R.S. Priya, D. Geetha, P. Ramesh. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs–A comparative study. Ecotoxicology and Environmental Safety, 2016, 134: 308−318. https://doi.org/10.1016/j.ecoenv.2015.07.037
I. Ashok, R. Sheeladevi, D. Wankhar. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain. Journal of Biomedical Research, 2015, 29(5): 390−396. https://doi.org/10.7555%2FJBR.28.20120118
Y.-H. Lee, F.-Y. Cheng, H.-W. Chiu, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials, 2014, 35(16): 4706−4715. https://doi.org/10.1016/j.biomaterials.2014.02.021
P. Chairuangkitti, S. Lawanprasert, S. Roytrakul, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicology in Vitro, 2013, 27(1): 330−338. https://doi.org/10.1016/j.tiv.2012.08.021
Y. Wu, Q.F. Zhou. Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry, 2013, 32(1): 165−173. https://doi.org/10.1002/etc.2038
E. Beytut, M. Aksakal. The effect of long-term supplemental dietary cadmium on lipid peroxidation and the antioxidant system in the liver and kidneys of rabbits. Turkish Journal of Veterinary &Animal Sciences, 2002, 26(5): 1055−1060.
P.J. Babu, A. Tirkey, T.J.M. Rao, et al. Conventional and nanotechnology based sensors for creatinine (a kidney biomarker) detection: A consolidated review. Analytical Biochemistry, 2022, 645: 114622. https://doi.org/10.1016/j.ab.2022.114622
S.H. Park, J.O. Lim, W.I. Kim, et al. Subchronic toxicity evaluation of aluminum oxide nanoparticles in rats following 28-day repeated oral administration. Biological Trace Element Research, 2022, 200(7): 3215−3226. https://doi.org/10.1007/s12011-021-02926-5
C. Recordati, M. De Maglie, S. Bianchessi, et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Particle and Fibre Toxicology, 2016, 13: 12. https://doi.org/10.1186/s12989-016-0124-x
H.M. Jhanzab, A. Razzaq, Y. Bibi, et al. Proteomic analysis of the effect of inorganic and organic chemicals on silver nanoparticles in wheat. International Journal of Molecular Sciences, 2019, 20(4): 825. https://doi.org/10.3390/ijms20040825
T. Silva, L.R. Pokhrel, B. Dubey, et al. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Science of the Total Environment, 2014, 468: 968−976. https://doi.org/10.1016/j.scitotenv.2013.09.006