AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Application of Artificial Intelligence in the Exploration and Optimization of Biomedical Nanomaterials

Xiaoyang Zhu1Yan Li1( )Ning Gu2( )
State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
Medical School, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

Abstract

Nanomaterials play a crucial role in the biomedical field, and with the rise of the digital era, artificial intelligence (AI) has become a valuable tool in all stages of nanomaterial development, spanning from design to synthesis and characterization. In this review, we explore recent advancements in the field of AI-driven nanomaterials. Firstly, we delve into how AI can be leveraged in material design, utilizing vast databases to develop new materials. Secondly, we discuss intelligent synthesis, where AI algorithms are employed to optimize the synthesis process. Subsequently, we explore how to efficiently extract depth information from nanomaterial characterization results using AI-based methods. Lastly, we offer a glimpse into the future of biomedical nanomaterials, highlighting the potential impact of AI in this rapidly evolving field.

References

[1]

M. Mabrouk, D.B. Das, Z.A. Salem, et al. Nanomaterials for biomedical applications: production, characterisations, recent trends and difficulties. Molecules, 2021, 26(4): 1077. https://doi.org/10.3390/molecules26041077

[2]

C. Oksel Karakus, E. Bilgi, D.A. Winkler. Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology, 2021, 15(3): 331−351. https://doi.org/10.1080/17435390.2020.1860265

[3]

S. Moffatt. Nanodiagnostics: a revolution in biomedical nanotechnology. MOJ Proteomics Bioinform, 2016, 3(2): 00080. https://doi.org/10.15406/mojpb.2016.03.00080

[4]

W. Jiang, D. Rutherford, T. Vuong, et al. Nanomaterials for treating cardiovascular diseases: A review. Bioactive Materials, 2017, 2(4): 185−198. https://doi.org/10.1016/j.bioactmat.2017.11.002

[5]

J. Xie, M. Zhao, C. Wang, et al. Rational Design of Nanomaterials for Various Radiation‐Induced Diseases Prevention and Treatment. Advanced Healthcare Materials, 2021, 10(6): 2001615. https://doi.org/10.1002/adhm.202001615

[6]

Y. Liu, J. Shi. Antioxidative nanomaterials and biomedical applications. Nano Today, 2019, 27: 146−177. https://doi.org/10.1016/j.nantod.2019.05.008

[7]

R. Santana, R. Zuluaga, P. Gañán, et al. Designing nanoparticle release systems for drug–vitamin cancer co-therapy with multiplicative perturbation-theory machine learning (PTML) models. Nanoscale, 2019, 11(45): 21811−21823. https://doi.org/10.1039/C9NR05070A

[8]

P. Tian. Molecular dynamics simulations of nanoparticles. Annual Reports Section" C"(Physical Chemistry), 2008, 104: 142−164. https://doi.org/10.1039/B703897F

[9]

M.N. Al-Qattan, P.K. Deb, R.K. Tekade. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug discovery today, 2018, 23(2): 235−250. https://doi.org/10.1016/j.drudis.2017.10.002

[10]
E.S. Brunette, R.C. Flemmer, C.L. Flemmer. A review of artificial intelligence. In: Proceedings of the 4th International Conference on Autonomous Robots and Agents, 2009: 385–392.
[11]

M.I. Jordan, T.M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255−260. https://doi.org/10.1126/science.aaa8415

[12]

Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 2015, 521(7553): 436−444. https://doi.org/10.1038/nature14539

[13]

A. Voulodimos, N. Doulamis, A. Doulamis, et al. Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018, 2018: 7068349. https://doi.org/10.1155/2018/7068349

[14]
K.R. Chowdhary. Natural language processing. In: Fundamentals of Artificial Intelligence, Springer: New Delhi, 2020: 603–649.
[15]

W. Sha, Y. Guo, Q. Yuan, et al. Artificial intelligence to power the future of materials science and engineering. Advanced Intelligent Systems, 2020, 2(4): 1900143. https://doi.org/10.1002/aisy.201900143

[16]

M. Wang, T. Wang, P. Cai, et al. Nanomaterials discovery and design through machine learning. Small Methods, 2019, 3(5): 1900025. https://doi.org/10.1002/smtd.201900025

[17]

A.S. Barnard, B. Motevalli, A.J. Parker, et al. Nanoinformatics, and the big challenges for the science of small things. Nanoscale, 2019, 11(41): 19190−19201. https://doi.org/10.1039/C9NR05912A

[18]

Y. Jiang, D. Salley, A. Sharma, et al. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science Advances, 2022, 8(40): eabo2626. https://doi.org/10.1126/sciadv.abo2626

[19]

M.A. Soldatov, V.V. Butova, D. Pashkov, et al. Self-driving laboratories for development of new functional materials and optimizing known reactions. Nanomaterials, 2021, 11(3): 619. https://doi.org/10.3390/nano11030619

[20]

B. Han, Y. Lin, Y. Yang, et al. Deep-Learning-Enabled Fast Optical Identification and Characterization of 2D Materials. Advanced Materials, 2020, 32(29): 2000953. https://doi.org/10.1002/adma.202000953

[21]

A.S. Anker, E.T. Kjær, M. Juelsholt, et al. Extracting structural motifs from pair distribution function data of nanostructures using explainable machine learning. npj Computational Materials, 2022, 8(1): 213. https://doi.org/10.1038/s41524-022-00896-3

[22]

J. Lin, Y. Liu, H. Sui, et al. Microstructure of graphene oxide–silica-reinforced OPC composites: Image-based characterization and nano-identification through deep learning. Cement and Concrete Research, 2022, 154: 106737. https://doi.org/10.1016/j.cemconres.2022.106737

[23]

S. Mahjoubi, F. Ye, Y. Bao, et al. Identification and classification of exfoliated graphene flakes from microscopy images using a hierarchical deep convolutional neural network. Engineering Applications of Artificial Intelligence, 2023, 119: 105743. https://doi.org/10.1016/j.engappai.2022.105743

[24]

R.X. Yang, C.A. McCandler, O. Andriuc, et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano, 2022, 16(12): 19873−19891. https://doi.org/10.1021/acsnano.2c08411

[25]

Z. Ji, W. Guo, S. Sakkiah, et al. Nanomaterial databases: Data sources for promoting design and risk assessment of nanomaterials. Nanomaterials, 2021, 11(6): 1599. https://doi.org/10.3390/nano11061599

[26]

X. Yan, A. Sedykh, W. Wang, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nature Communications, 2020, 11(1): 2519. https://doi.org/10.1038/s41467-020-16413-3

[27]

C. Chen, Z. Yaari, E. Apfelbaum, et al. Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183: 114172. https://doi.org/10.1016/j.addr.2022.114172

[28]

L. Wilbraham, S.H.M. Mehr, L. Cronin. Digitizing chemistry using the chemical processing unit: from synthesis to discovery. Accounts of Chemical Research, 2020, 54(2): 253−262. https://doi.org/10.1021/acs.accounts.0c00674

[29]

L. Zhang, S. Shao. Image-based machine learning for materials science. Journal of Applied Physics, 2022, 132(10): 100701. https://doi.org/10.1063/5.0087381

[30]

Y. Hu, S. Lv, J. Wan, et al. Recent advances in nanomaterials for prostate cancer detection and diagnosis. Journal of Materials Chemistry B, 2022, 10(26): 4907−4934. https://doi.org/10.1039/D2TB00448H

[31]

Y. Xu, Y. Zhang. Application of nanomaterials in medical detection and disease diagnosis. Basic &Clinical Medicine, 2022, 42(1): 33. https://doi.org/10.16352/j.issn.1001-6325.2022.01.005

[32]

O.O. Ayodele, A.O. Adesina, S. Pourianejad, et al. Recent advances in nanomaterial-based aptasensors in medical diagnosis and therapy. Nanomaterials, 2021, 11(4): 932. https://doi.org/10.3390/nano11040932

[33]

X. Xue, F. Wang, X. Liu. Emerging functional nanomaterials for therapeutics. Journal of Materials Chemistry, 2011, 21(35): 13107−13127. https://doi.org/10.1039/C1JM11401H

[34]

Z. Cheng, M. Li, R. Dey, et al. Nanomaterials for cancer therapy: Current progress and perspectives. Journal of Hematology &Oncology, 2021, 14(1): 85. https://doi.org/10.1186/s13045-021-01096-0

[35]

H. Li, S. Yang, D. Hui, et al. Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging. Nanotechnology Reviews, 2020, 9(1): 1265−1283. https://doi.org/10.1515/ntrev-2020-0095

[36]

H.A. Hemeg. Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 2017, 2017: 8211−8225. https://doi.org/10.2147/IJN.S132163

[37]

W. Liao, Y. Du, C. Zhang, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomaterialia, 2019, 86: 1−14. https://doi.org/10.1016/j.actbio.2018.12.045

[38]

L. Crisan, B.V. Crisan, S. Bran, et al. Carbon-based nanomaterials as scaffolds in bone regeneration. Particulate Science and Technology, 2020, 38(8): 912−921. https://doi.org/10.1080/02726351.2019.1637382

[39]

M. Saeedimasine, E.G. Brandt, A.P. Lyubartsev. Atomistic perspective on biomolecular adsorption on functionalized carbon nanomaterials under ambient conditions. The Journal of Physical Chemistry B, 2020, 125(1): 416−430. https://doi.org/10.1021/acs.jpcb.0c08622

[40]

K.D. Patel, R.K. Singh, H.W. Kim. Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019, 6(3): 434−469. https://doi.org/10.1039/C8MH00966J

[41]

L. Zhang, C. Zhu, R. Huang, et al. Mechanisms of reactive oxygen species generated by inorganic nanomaterials for cancer therapeutics. Frontiers in Chemistry, 2021, 9: 630969. https://doi.org/10.3389/fchem.2021.630969

[42]

X. Wang, X. Zhong, J. Li, et al. Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021, 50(15): 8669−8742. https://doi.org/10.1039/D0CS00461H

[43]
N.J. Ghdeeb, N.A. Hussain.Antimicrobial Activity of ZnO Nanoparticles prepared using a green synthesis approach. Nano Biomedicineand Engineering, 2023, 15(1): 14–20. https://doi.org/10.26599/NBE.2023.9290003
[44]

Q. Bu, P. Li, Y. Xia, et al. Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials. Molecules, 2023, 28(9): 3819. https://doi.org/10.3390/molecules28093819

[45]

A.K. Gaharwar, N.A. Peppas, A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 2014, 111(3): 441−453. https://doi.org/10.1002/bit.25160

[46]

G. Sharma, B. Thakur, M. Naushad, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16: 113−146. https://doi.org/10.1007/s10311-017-0671-x

[47]

X. Zheng, P. Zhang, Z. Fu, et al. Applications of nanomaterials in tissue engineering. RSC Advances, 2021, 11(31): 19041−19058. https://doi.org/10.1039/D1RA01849C

[48]

G.A. Saracino, D. Cigognini, D. Silva, et al. Nanomaterials design and tests for neural tissue engineering. Chemical Society Reviews, 2013, 42(1): 225−262. https://doi.org/10.1039/C2CS35065C

[49]

H. Sharma, S. Mondal. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. International Journal of Molecular Sciences, 2020, 21(17): 6280. https://doi.org/10.3390/ijms21176280

[50]

A.G. Castro, M. Diba, M. Kersten, et al. Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration. Materials Science and Engineering:C, 2018, 85: 154−161. https://doi.org/10.1016/j.msec.2017.12.023

[51]

J.A. Hubbell, A. Chilkoti. Nanomaterials for drug delivery. Science, 2012, 337(6092): 303−305. https://doi.org/10.1126/science.1219657

[52]

Z. Li, S. Tan, S. Li, et al. Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports, 2017, 38(2): 611−624. https://doi.org/10.3892/or.2017.5718

[53]

S. Siddique, J.C. Chow. Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, 2020, 10(11): 3824. https://doi.org/10.3390/app10113824

[54]

E. Nance. Careers in nanomedicine and drug delivery. Advanced Drug Delivery Reviews, 2019, 144: 180−189. https://doi.org/10.1016/j.addr.2019.06.009

[55]

G. Hong, S. Diao, A.L. Antaris, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816−10906. https://doi.org/10.1021/acs.chemrev.5b00008

[56]

R. Liang, M. Wei, D.G. Evans, et al. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chemical Communications, 2014, 50(91): 14071−14081. https://doi.org/10.1039/C4CC03118K

[57]

N. Gu, Z. Zhang, Y. Li. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Research, 2022, 15(1): 1−17. https://doi.org/10.1007/s12274-021-3546-1

[58]

H. Fatima, K.S. Kim. Iron-based magnetic nanoparticles for magnetic resonance imaging. Advanced Powder Technology, 2018, 29(11): 2678−2685. https://doi.org/10.1016/j.apt.2018.07.017

[59]

A. Baki, A. Remmo, N. Löwa, et al. Albumin-coated single-core iron oxide nanoparticles for enhanced molecular magnetic imaging (Mri/mpi). International Journal of Molecular Sciences, 2021, 22(12): 6235. https://doi.org/10.3390/ijms22126235

[60]

S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27): 12871−12934. https://doi.org/10.1039/C8NR02278J

[61]

C. Giannini, M. Ladisa, D. Altamura, et al. X-ray diffraction: a powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals, 2016, 6(8): 87. https://doi.org/10.3390/cryst6080087

[62]
S.A. Khan, S.B. Khan, L.U. Khan, et al. Fourier transform infrared spectroscopy: fundamentals and application in functional groups and nanomaterials characterization. In: Handbook of Materials Characterization. Springer, Cham. 2018: 317–344.
[63]
S. Loganathan, R.B. Valapa, R.K. Mishra, et al. Thermogravimetric analysis for characterization of nanomaterials. In: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. Elsevier, 2017: 67–108.
[64]

A.G. Bannov, M.V. Popov, P.B. Kurmashov. Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. Journal of Thermal Analysis and Calorimetry, 2020, 142(1): 349−370. https://doi.org/10.1007/s10973-020-09647-2

[65]
J. Zhuang, A.C. Midgley, Y. Wei, et al. Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Advanced Materials, 2023.
[66]

P.R. Regonia, J.P. Olorocisimo, F. De los Reyes, et al. Machine learning-enabled nanosafety assessment of multi-metallic alloy nanoparticles modified TiO2 system. NanoImpact, 2022, 28: 100442. https://doi.org/10.1016/j.impact.2022.100442

[67]

S. Sengottiyan, A. Mikolajczyk, K. Jagiełło, et al. Core, coating, or corona? the importance of considering protein coronas in nano-QSPR modeling of zeta potential. ACS Nano, 2023, 17(3): 1989−1997. https://doi.org/10.1021/acsnano.2c06977

[68]

T. Wang, D.P. Russo, D. Bitounis, et al. Integrating structure annotation and machine learning approaches to develop graphene toxicity models. Carbon, 2023, 204: 484−494. https://doi.org/10.1016/j.carbon.2022.12.065

[69]

S. Ferdosi, A. Stukalov, M. Hasan, et al. Enhanced competition at the nano–bio interface enables comprehensive characterization of protein corona dynamics and deep coverage of proteomes. Advanced Materials, 2022, 34(44): 2206008. https://doi.org/10.1002/adma.202206008

[70]

P.S. Lamoureux, T.S. Choksi, V. Streibel, et al. Combining artificial intelligence and physics-based modeling to directly assess atomic site stabilities: from sub-nanometer clusters to extended surfaces. Physical Chemistry Chemical Physics, 2021, 23: 22022−22034. https://doi.org/10.1039/D1CP02198B

[71]

F. Ahmad, A. Mahmood, T. Muhmood. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomaterials Science, 2021, 9(5): 1598−1608. https://doi.org/10.1039/D0BM01672A

[72]

E.M. Chan, C. Xu, A.W. Mao, et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Letters, 2010, 10(5): 1874−1885. https://doi.org/10.1021/nl100669s

[73]

S. Kajita, N. Ohba, A. Suzumura, et al. Discovery of superionic conductors by ensemble-scope descriptor. NPG Asia Materials, 2020, 12(1): 31. https://doi.org/10.1038/s41427-020-0211-1

[74]

G. Yamankurt, E.J. Berns, A. Xue, et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nature Biomedical Engineering, 2019, 3: 318−327. https://doi.org/10.1038/s41551-019-0351-1

[75]

M. Yuan, M. Kermanian, T. Agarwal, et al. Defect engineering in biomedical sciences. Advanced Materials, 2023. https://doi.org/10.1002/adma.202304176

[76]

Y. Wu, H. Duan, H. Xi. Machine learning-driven insights into defects of zirconium metal–organic frameworks for enhanced ethane–ethylene separation. Chemistry of Materials, 2020, 32(7): 2986−2997. https://doi.org/10.1021/acs.chemmater.9b05322

[77]

S. Li, A.S. Barnard. Inverse Design of Nanoparticles Using Multi‐Target Machine Learning. Advanced Theory and Simulations, 2022, 5(2): 2100414. https://doi.org/10.1002/adts.202100414

[78]

D.G. Thomas, S. Chikkagoudar, A. Heredia-Langner, et al. Physicochemical signatures of nanoparticle-dependent complement activation. Computational Science &Discovery, 2014, 7(1): 015003. https://doi.org/10.1088/1749-4699/7/1/015003

[79]

D.P. Boso, S.Y. Lee, M. Ferrari, et al. Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks. International Journal of Nanomedicine, 2011 1517−1526. https://doi.org/10.2147/ijn.s20283

[80]

G. Konstantopoulos, E.P. Koumoulos, C.A. Charitidis. Digital innovation enabled nanomaterial manufacturing; machine learning strategies and green perspectives. Nanomaterials, 2022, 12(15): 2646. https://doi.org/10.3390/nano12152646

[81]

A.S. Barnard, G. Opletal. Selecting machine learning models for metallic nanoparticles. Nano Futures, 2020, 4(3): 035003. https://doi.org/10.1088/2399-1984/ab9c3b

[82]

A. Fariq, T. Khan, A. Yasmin. Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 2017, 15(4): 241−248. https://doi.org/10.1016/j.jab.2017.03.004

[83]

G. Grasso, D. Zane, R. Dragone. Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 2019, 10(1): 11. https://doi.org/10.3390/nano10010011

[84]

T. Yu, S. Su, J. Hu, et al. A new strategy for microbial taxonomic identification through micro‐biosynthetic gold nanoparticles and machine learning. Advanced Materials, 2022, 34(11): 2109365. https://doi.org/10.1002/adma.202109365

[85]

L. Yao, H. An, S. Zhou, et al. Seeking regularity from irregularity: Unveiling the synthesis–nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning. Nanoscale, 2022, 14(44): 16479−16489. https://doi.org/10.1039/D2NR03712B

[86]

N. Elahi, M. Kamali, M.H. Baghersad. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184: 537−556. https://doi.org/10.1016/j.talanta.2018.02.088

[87]

J. Ma, S.M.Y. Lee, C. Yi, et al. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications–a review. Lab on a Chip, 2017, 17(2): 209−226. https://doi.org/10.1039/C6LC01049K

[88]

J. Ma, C.W. Li. Rapid and continuous parametric screening for the synthesis of gold nanocrystals with different morphologies using a microfluidic device. Sensors and Actuators B:Chemical, 2018, 262: 236−244. https://doi.org/10.1016/j.snb.2018.02.001

[89]

A.A. Guda, M.V. Kirichkov, V.V. Shapovalov, et al. Machine learning analysis of reaction parameters in UV-mediated synthesis of gold nanoparticles. The Journal of Physical Chemistry C, 2023, 127(2): 1097−1108. https://doi.org/10.1021/acs.jpcc.2c06625

[90]

L.F. Ferreira, G.F. Giordano, A.L. Gobbi, et al. Real-time and in situ monitoring of the synthesis of silica nanoparticles. ACS Sensors, 2022, 7(4): 1045−1057. https://doi.org/10.1021/acssensors.1c02697

[91]

P. Wadhwa, S. Sharma, S. Sahu, et al. A review of nanoparticles characterization techniques. Current Nanomaterials, 2022, 7(3): 202−214. https://doi.org/10.2174/2405461507666220405113715

[92]

V.S. Ramkumar, A. Pugazhendhi, K. Gopalakrishnan, et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, 2017, 14: 1−7. https://doi.org/10.1016/j.btre.2017.02.001

[93]

Y. Xu, D. Xu, N. Yu, et al. Machine Learning Enhanced Optical Microscopy for the Rapid Morphology Characterization of Silver Nanoparticles. ACS Applied Materials &Interfaces, 2023, 15(14): 18244−18251. https://doi.org/10.1021/acsami.3c02448

[94]

J.W. Seo, D. Schryvers. TEM investigation of the microstructure and defects of CuZr martensite. Part II: Planar defects. Acta Materialia, 1998, 46(4): 1177−1183. https://doi.org/10.1016/S1359-6454(97)00334-0

[95]
K. Ioku, M. Kamitakahara. Hydrothermal synthesis of hydroxyapatite ceramics for medical application. In: Biomaterials in Asia. 2008: 317–326.
[96]
O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, 2015: 234–241.
[97]

S.J. Rigatti. Random forest. Journal of Insurance Medicine, 2017, 47(1): 31−39. https://doi.org/10.17849/insm-47-01-31-39.1

[98]

C.K. Groschner, C. Choi, M.C. Scott. Machine learning pipeline for segmentation and defect identification from high-resolution transmission electron microscopy data. Microscopy and Microanalysis, 2021, 27(3): 549−556. https://doi.org/10.1017/S1431927621000386

[99]

X. Zhu, Z. Zhang, Y. Mao, et al. Applying deep learning in automatic and rapid measurement of lattice spacings in HRTEM images. Science China Materials, 2020, 63(11): 2365−2370. https://doi.org/10.1007/s40843-020-1368-7

[100]
A.E. Vladár, V.D. Hodoroaba. Characterization of nanoparticles by scanning electron microscopy. Characterization of nanoparticles. Elsevier, 2020: 7−27.
[101]

R. Aversa, M.H. Modarres, S. Cozzini, et al. The first annotated set of scanning electron microscopy images for nanoscience. Scientific Data, 2018, 5(1): 1−10. https://doi.org/10.1038/sdata.2018.172

[102]
K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[103]

W. S. Noble. What is a support vector machine. Nature Biotechnology, 2006, 24(12): 1565−1567. https://doi.org/10.1038/nbt1206-1565

[104]

G. Dahy, M.M. Soliman, H. Alshater, et al. Optimized deep networks for the classification of nanoparticles in scanning electron microscopy imaging. Computational Materials Science, 2023, 223: 112135. https://doi.org/10.1016/j.commatsci.2023.112135

[105]

H. Kim, J. Han, T.Y.J. Han. Machine vision-driven automatic recognition of particle size and morphology in SEM images. Nanoscale, 2020, 12(37): 19461−19469. https://doi.org/10.1039/D0NR04140H

[106]

R. Jin, H. Qian, Z. Wu, et al. Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. The Journal of Physical Chemistry Letters, 2010, 1(19): 2903−2910. https://doi.org/10.1021/jz100944k

[107]

T. Chen, J. Li, P. Cai, et al. Identification of chemical compositions from “featureless” optical absorption spectra: Machine learning predictions and experimental validations. Nano Research, 2023, 16(3): 4188−4196. https://doi.org/10.1007/s12274-022-5095-7

[108]

S. Knoppe, J. Boudon, I. Dolamic, et al. Size exclusion chromatography for semipreparative scale separation of Au38 (SR) 24 and Au40 (SR) 24 and larger clusters. Analytical chemistry, 2011, 83(13): 5056−5061. https://doi.org/10.1021/ac200789v

Nano Biomedicine and Engineering
Pages 342-353
Cite this article:
Zhu X, Li Y, Gu N. Application of Artificial Intelligence in the Exploration and Optimization of Biomedical Nanomaterials. Nano Biomedicine and Engineering, 2023, 15(3): 342-353. https://doi.org/10.26599/NBE.2023.9290035

2887

Views

693

Downloads

13

Crossref

12

Scopus

Altmetrics

Received: 30 July 2023
Revised: 24 August 2023
Accepted: 28 August 2023
Published: 12 October 2023
© The Author(s) 2023.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return