Journal Home > Volume 16 , Issue 1

Single-atom nanozymes have attracted much attention as a new type of high-performance nanozymes. Compared with other nanozymes, single-atom nanozymes have become the most promising candidates for naturally-occurring enzymes due to their lower cost, better activity, more flexible preparation, higher atom utilization, and flexible compositional and structural modifications. Moreover, the catalytic activity of single-atom nanozymes can be precisely constructed by regulating the active center and synergistic environment. Advanced characterization techniques combined with theoretical calculations can accurately identify the enzyme-like active sites and deeply reveal structure-performance correlation. In this review, the active center and enzyme-like activities of single-atom nanozymes are comprehensively summarized along with the recent research advances in antitumor, neurological disorders, wound healing, and antimicrobial. Finally, we also explore the future opportunities and challenges for single-atom nanozymes in the design and applications.


menu
Abstract
Full text
Outline
About this article

Recent Advances in the Bioactive Structure and Application of Single-atom Nanozymes

Show Author's information Shaofang ZhangXiao-Dong Zhang( )
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China

Abstract

Single-atom nanozymes have attracted much attention as a new type of high-performance nanozymes. Compared with other nanozymes, single-atom nanozymes have become the most promising candidates for naturally-occurring enzymes due to their lower cost, better activity, more flexible preparation, higher atom utilization, and flexible compositional and structural modifications. Moreover, the catalytic activity of single-atom nanozymes can be precisely constructed by regulating the active center and synergistic environment. Advanced characterization techniques combined with theoretical calculations can accurately identify the enzyme-like active sites and deeply reveal structure-performance correlation. In this review, the active center and enzyme-like activities of single-atom nanozymes are comprehensively summarized along with the recent research advances in antitumor, neurological disorders, wound healing, and antimicrobial. Finally, we also explore the future opportunities and challenges for single-atom nanozymes in the design and applications.

Keywords: catalytic activity, applications, single-atom nanozymes, active center

References(121)

[1]

X.Y. Wang, X.J. Gao, L. Qin, et al. Eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10: 704. https://doi.org/10.1038/s41467-019-08657-5

[2]

S.F. Ji, B. Jiang, H.G. Hao, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4(5): 407−417. https://doi.org/10.1038/s41929-021-00609-x

[3]

R.F. Zhang, X.Y. Yan, K.L. Fan. Nanozymes inspired by natural enzymes. Accounts of Materials Research, 2021, 2(7): 534−547. https://doi.org/10.1021/accountsmr.1c00074

[4]

H.L. Liu, Y.H. Li, S. Sun, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nature Communications, 2021, 12: 114. https://doi.org/10.1038/s41467-020-20275-0

[5]
Breslow, R. Artificial enzymes. Science, 1982, 218(4572): 532–537.
DOI
[6]

K. Chen, F.H. Arnold. Engineering new catalytic activities in enzymes. Nature Catalysis, 2020, 3(3): 203−213. https://doi.org/10.1038/s41929-019-0385-5

[7]

Z. Zhou, G. Roelfes. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nature Catalysis, 2020, 3(3): 289−294. https://doi.org/10.1038/s41929-019-0420-6

[8]

X.K. Ren, R.D. Fasan. Synergistic catalysis in an artificial enzyme. Nature Catalysis, 2020, 3(3): 184−185. https://doi.org/10.1038/s41929-020-0435-z

[9]

K.L. Fan, C.Q. Cao, Y.X. Pan, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotechnology, 2012, 7(7): 459−464. https://doi.org/10.1038/nnano.2012.90

[10]

L.Z. Gao, J. Zhuang, L. Nie, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2(9): 577−583. https://doi.org/10.1038/nnano.2007.260

[11]

J.Y. Wang, X.Y. Mu, Y.H. Li, et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking. Small, 2018, 14(13): 1703736. https://doi.org/10.1002/smll.201703736

[12]

Y.Q. Ding, G.Y. Ren, G. Wang, et al. V2O5 nanobelts mimick tandem enzymes to achieve nonenzymatic online monitoring of glucose in living rat brain. Analytical Chemistry, 2020, 92(6): 4583−4591. https://doi.org/10.1021/acs.analchem.9b05872

[13]

Wu, J., Wang, X., Wang, Q. et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial Enzymes (II). Chem. Soc. Rev., 2019, 48(4): 1004−1076. https://doi.org/10.1039/c8cs00457a

[14]

Y.B. Zhou, B.W. Liu, R.H. Yang, et al. Filling in the gaps between nanozymes and enzymes: Challenges and opportunities. Bioconjugate Chemistry, 2017, 28(12): 2903−2909. https://doi.org/10.1021/acs.bioconjchem.7b00673

[15]

S. Sun, H.L. Liu, Q. Xin, et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion. Nano Letters, 2021, 21(6): 2562−2571. https://doi.org/10.1021/acs.nanolett.0c05148

[16]

X.Y. Mu, J.Y. Wang, H. He, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Science Advances, 2021, 7(46): eabk1210. https://doi.org/10.1126/sciadv.abk1210

[17]

H.Y. Ruan, S.F. Zhang, H.G. Wang, et al. Single-atom Pd/CeO2 nanostructures for mimicking multienzyme activities. ACS Applied Nano Materials, 2022, 5(5): 6564−6574. https://doi.org/10.1021/acsanm.2c00644

[18]

M. Soh, D.W. Kang, H.G. Jeong, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angewandte Chemie International Edition, 2017, 56(38): 11399−11403. https://doi.org/10.1002/anie.201704904

[19]

Z.Z. Wang, Y. Zhang, E.G. Ju, et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nature Communications, 2018, 9: 3334. https://doi.org/10.1038/s41467-018-05798-x

[20]

X.Y. Mu, J.Y. Wang, Y.H. Li, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano, 2019, 13(2): 1870−1884. https://doi.org/10.1021/acsnano.8b08045

[21]

S.F. Zhang, Y. Liu, S. Sun, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics, 2021, 11(6): 2806−2821. https://doi.org/10.7150/thno.51912

[22]

Q. Xin, L. Wang, H.Y. Ruan, et al. Multienzyme-mimetic activity of gold/cerium oxide nanozyme. Particle &Particle Systems Characterization, 2023, 40(7): 2200203. https://doi.org/10.1002/ppsc.202200203

[23]

L.Z. Gao, K.L. Fan, X.Y. Yan. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 2017, 7(13): 3207−3227. https://doi.org/10.7150/thno.19738

[24]

Z.W. Chen, J.J. Yin, Y.T. Zhou, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6(5): 4001−4012. https://doi.org/10.1021/nn300291r

[25]

S.Y. Fu, S. Wang, X.D. Zhang, et al. Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy. Colloids and Surfaces B,Biointerfaces, 2017, 154: 239−245. https://doi.org/10.1016/j.colsurfb.2017.03.038

[26]

S. Ghosh, P. Roy, N. Karmodak, et al. Nanoisozymes: Crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angewandte Chemie International Edition, 2018, 57(17): 4510−4515. https://doi.org/10.1002/anie.201800681

[27]

Y. Duan, X.L. Zhang, F.Y. Gao, et al. Interfacial engineering of Ni/V2O3 heterostructure catalyst for boosting hydrogen oxidation reaction in alkaline electrolytes. Angewandte Chemie International Edition, 2023, 62(10): e202217275. https://doi.org/10.1002/anie.202217275

[28]

H.J. Kwon, M.Y. Cha, D. Kim, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano, 2016, 10(2): 2860−2870. https://doi.org/10.1021/acsnano.5b08045

[29]

A.L. Popov, N.R. Popova, N.V. Tarakina, et al. Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomaterials Science &Engineering, 2018, 4(7): 2453−2462. https://doi.org/10.1021/acsbiomaterials.8b00489

[30]

Y.Y. Li, X. He, J.J. Yin, et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angewandte Chemie International Edition, 2015, 54(6): 1832−1835. https://doi.org/10.1002/anie.201410398

[31]

B.T. Qiao, A.Q. Wang, X.F. Yang, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634−641. https://doi.org/10.1038/nchem.1095

[32]

G. Kyriakou, M.B. Boucher, A.D. Jewell, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209−1212. https://doi.org/10.1126/science.1215864

[33]

P.X. Liu, Y. Zhao, R.X. Qin, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352(6287): 797−801. https://doi.org/10.1126/science.aaf5251

[34]
Y. Wang, G. Jia, X. Cui, et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem, 2021, 7(2): 436–449.
DOI
[35]

A.Q. Wang, J. Li, T. Zhang. Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2018, 2(6): 65−81. https://doi.org/10.1038/s41570-018-0010-1

[36]

S. Mitchell, J. Pérez-Ramírez. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nature Communications, 2020, 11(1): 4302. https://doi.org/10.1038/s41467-020-18182-5

[37]

L.H. Shen, D.X. Ye, H.B. Zhao, et al. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Analytical Chemistry, 2021, 93(3): 1221−1231. https://doi.org/10.1021/acs.analchem.0c04084

[38]

X.H. He, Q. He, Y.C. Deng, et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nature Communications, 2019, 10: 3663. https://doi.org/10.1038/s41467-019-11619-6

[39]

Y. Xu, J. Xue, Q. Zhou, et al. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interactions. Angewandte Chemie International Edition, 2020, 59(34): 14498−14503. https://doi.org/10.1002/anie.202003949

[40]

T.F. Liu, B.W. Xiao, F. Xiang, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nature Communications, 2020, 11: 2788. https://doi.org/10.1038/s41467-020-16544-7

[41]

R.Z. Li, D.S. Wang. Understanding the structure-performance relationship of active sites at atomic scale. Nano Research, 2022, 15(8): 6888−6923. https://doi.org/10.1007/s12274-022-4371-x

[42]
J.L. Cheng, D.S. Wang. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43(6): 1380–1398.
DOI
[43]

X.B. Zheng, J.R. Yang, Z.F. Xu, et al. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angewandte Chemie International Edition, 2022, 61(32): e202205946. https://doi.org/10.1002/anie.202205946

[44]

Z. Li, Y.J. Chen, S.F. Ji, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry, 2020, 12(8): 764−772. https://doi.org/10.1038/s41557-020-0473-9

[45]

K. Jiang, M. Luo, Z.X. Liu, et al. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nature Communications, 2021, 12: 1687. https://doi.org/10.1038/s41467-021-21956-0

[46]

L. Jiao, H. Yan, Y. Wu, et al. When nanozymes meet single-atom catalysis. Angewandte Chemie International Edition, 2020, 59(7): 2565−2576. https://doi.org/10.1002/anie.201905645

[47]

Y. Wu, L. Jiao, X. Luo, et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small, 2019, 15(43): 1903108. https://doi.org/10.1002/smll.201903108

[48]

R.B. Leveson-Gower, C. Mayer, G. Roelfes. The importance of catalytic promiscuity for enzyme design and evolution. Nature Reviews Chemistry, 2019, 3(12): 687−705. https://doi.org/10.1038/s41570-019-0143-x

[49]

F.F. Cao, L. Zhang, Y.W. You, et al. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angewandte Chemie International Edition, 2020, 59(13): 5108−5115. https://doi.org/10.1002/anie.201912182

[50]

H.A. Bunzel, J.L.R. Anderson, D. Hilvert, et al. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nature Chemistry, 2021, 13(10): 1017−1022. https://doi.org/10.1038/s41557-021-00763-6

[51]

N. Kornienko, J.Z. Zhang, K.K. Sakimoto, et al. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nature Nanotechnology, 2018, 13(10): 890−899. https://doi.org/10.1038/s41565-018-0251-7

[52]

I. Drienovská, G. Roelfes. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nature Catalysis, 2020, 3(3): 193−202. https://doi.org/10.1038/s41929-019-0410-8

[53]

A.R. Poerwoprajitno, L. Gloag, J. Watt, et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5(3): 231−237. https://doi.org/10.1038/s41929-022-00756-9

[54]

M.D. Marcinkowski, M.T. Darby, J.L. Liu, et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nature Chemistry, 2018, 10(3): 325−332. https://doi.org/10.1038/nchem.2915

[55]

J. Jin, X. Han, Y.Y. Fang, et al. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Advanced Functional Materials, 2022, 32(8): 2109218. https://doi.org/10.1002/adfm.202109218

[56]

S. Liang, X.R. Deng, G.Y. Xu, et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Advanced Functional Materials, 2020, 30(13): 1908598. https://doi.org/10.1002/adfm.201908598

[57]

R.J. Yan, S. Sun, J. Yang, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano, 2019, 13(10): 11552−11560. https://doi.org/10.1021/acsnano.9b05075

[58]

S.F. Zhang, H.Y. Ruan, Q. Xin, et al. Modulation of the biocatalytic activity and selectivity of CeO2 nanozymes via atomic doping engineering. Nanoscale, 2023, 15(9): 4408−4419. https://doi.org/10.1039/d2nr05742e

[59]

B. Xu, H. Wang, W. Wang, et al. A single-atom nanozyme for wound disinfection applications. Angewandte Chemie International Edition, 2019, 58(15): 4911−4916. https://doi.org/10.1002/anie.201813994

[60]

D.D. Wang, H.H. Wu, S.Z.F. Phua, et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications, 2020, 11(1): 357. https://doi.org/10.1038/s41467-019-14199-7

[61]

Z.Y. Lyu, S.C. Ding, N. Zhang, et al. Single-atom nanozymes linked immunosorbent assay for sensitive detection of A β 1-40: A biomarker of alzheimer’s disease. Research, 2020, 2020: 4724505. https://doi.org/10.34133/2020/4724505

[62]

N. Cheng, J.C. Li, D. Liu, et al. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small, 2019, 15(48): 1901485. https://doi.org/10.1002/smll.201901485

[63]

S.F. Zhang, Y.H. Li, S. Sun, et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nature Communications, 2022, 13: 4744. https://doi.org/10.1038/s41467-022-32411-z

[64]

M.F. Huo, L.Y. Wang, Y.W. Wang, et al. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano, 2019, 13(2): 2643−2653. https://doi.org/10.1021/acsnano.9b00457

[65]

L. Jiao, J.B. Wu, H. Zhong, et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catalysis, 2020, 10(11): 6422−6429. https://doi.org/10.1021/acscatal.0c01647

[66]

R. Jiang, L. Li, T. Sheng, et al. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. Journal of the American Chemical Society, 2018, 140(37): 11594−11598. https://doi.org/10.1021/jacs.8b07294

[67]

Y.B. Li, M. Li, J. Lu, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198−9205. https://doi.org/10.1021/acsnano.9b03530

[68]

L. Jiao, H.Y. Yan, W.Q. Xu, et al. Self-assembly of all-inclusive allochroic nanoparticles for the improved ELISA. Analytical Chemistry, 2019, 91(13): 8461−8465. https://doi.org/10.1021/acs.analchem.9b01527

[69]

Y. Xiong, J.C. Dong, Z.Q. Huang, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390−397. https://doi.org/10.1038/s41565-020-0665-x

[70]

R.Z. Tian, H.Y. Ma, W. Ye, et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Advanced Functional Materials, 2022, 32(36): 2204025. https://doi.org/10.1002/adfm.202204025

[71]

J.Z. Qin, B. Han, X.X. Liu, et al. An enzyme-mimic single Fe-N3 atom catalyst for the oxidative synthesis of nitriles via C─C bond cleavage strategy. Science Advances, 2022, 8(40): eadd1267. https://doi.org/10.1126/sciadv.add1267

[72]
L. Jiao, Y. Kang, Y. Chen, et al. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today, 2021, 40: 101261.
DOI
[73]

M.M. Tong, F.F. Sun, Y. Xie, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu−N4 and Zn−N4 for promoting oxygen reduction reaction. Angewandte Chemie International Edition, 2021, 60(25): 14005−14012. https://doi.org/10.1002/anie.202102053

[74]

L. Huang, J. Chen, L. Gan, et al. Single-atom nanozymes. Science Advances, 2019, 5(5): eaav5490. https://doi.org/10.1126/sciadv.aav5490

[75]

S.M. Younan, Z.D. Li, X.X. Yan, et al. Zinc single atom confinement effects on catalysis in 1T-phase molybdenum disulfide. ACS Nano, 2023, 17(2): 1414−1426. https://doi.org/10.1021/acsnano.2c09918

[76]

Y. Wang, K. Qi, S.S. Yu, et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Letters, 2019, 11(1): 102. https://doi.org/10.1007/s40820-019-0324-7

[77]

X. Li, X.I. Pereira-Hernández, Y.Z. Chen, et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature, 2022, 611(7935): 284−288. https://doi.org/10.1038/s41586-022-05251-6

[78]

L. Jiao, W.Q. Xu, Y. Zhang, et al. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today, 2020, 35: 100971. https://doi.org/10.1016/j.nantod.2020.100971

[79]

C. Zhao, C. Xiong, X.K. Liu, et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chemical Communications, 2019, 55(16): 2285−2288. https://doi.org/10.1039/c9cc00199a

[80]

L. Jiao, W.Q. Xu, H.Y. Yan, et al. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Analytical Chemistry, 2019, 91(18): 11994−11999. https://doi.org/10.1021/acs.analchem.9b02901

[81]
P. Peng, L. Shi, F. Huo, et al. In situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery. ACS Nano, 2019, 13(1): 878–884.
DOI
[82]

M.S. Kim, J.S. Lee, H.S. Kim, et al. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Advanced Functional Materials, 2020, 30(1): 1905410. https://doi.org/10.1002/adfm.201905410

[83]

W.J. Ma, J.J. Mao, X.T. Yang, et al. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2018, 55(2): 159−162. https://doi.org/10.1039/C8CC08116F

[84]

S.J. Cao, Z.Y. Zhao, Y.J. Zheng, et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Advanced Materials, 2022, 34(16): 2200255. https://doi.org/10.1002/adma.202200255

[85]

Y.M. Zhao, P.C. Zhang, C. Xu, et al. Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Applied Materials &Interfaces, 2020, 12(15): 17334−17342. https://doi.org/10.1021/acsami.9b20711

[86]

Y. Pan, Y.J. Chen, K.L. Wu, et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10: 4290. https://doi.org/10.1038/s41467-019-12362-8

[87]

J.T. Liu, J. Huang, L. Zhang, et al. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chemical Society Reviews, 2021, 50(2): 1188−1218. https://doi.org/10.1039/D0CS00178C

[88]

X. Liang, Z.Y. Li, H. Xiao, et al. Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chemistry of Materials, 2021, 33(14): 5542−5554. https://doi.org/10.1021/acs.chemmater.1c00235

[89]

J.S. Huang, Q.Q. Lu, X. Ma, et al. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. Journal of Materials Chemistry A, 2018, 6(38): 18488−18497. https://doi.org/10.1039/C8TA06455E

[90]

B.L. Xu, S.S. Li, L.R. Zheng, et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Advanced Materials, 2022, 34(15): 2107088. https://doi.org/10.1002/adma.202107088

[91]

H.N. Zhang, J. Li, S.B. Xi, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871−14876. https://doi.org/10.1002/anie.201906079

[92]

C.Q. Wu, S.Q. Ding, D.B. Liu, et al. A unique Ru-N4-P coordinated structure synergistically waking up the nonmetal P active site for hydrogen production. Research, 2020, 2020: 5860712. https://doi.org/10.34133/2020/5860712

[93]

Y.J. Chen, B. Jiang, H.G. Hao, et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angewandte Chemie International Edition, 2023, 62(19): e202301879. https://doi.org/10.1002/anie.202301879

[94]

Y.J. Chen, P.X. Wang, H.G. Hao, et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. Journal of the American Chemical Society, 2021, 143(44): 18643−18651. https://doi.org/10.1021/jacs.1c08581

[95]

X. Wang, Q. Shi, Z. Zha, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria‐infected wound therapy. Bioactive Materials, 2021, 6(12): 4389−4401. https://doi.org/10.1016/j.bioactmat.2021.04.024

[96]
D.D. Wang, L. Zhang, C.L. Wang, , Cheng, Z. Y., Zheng, W., Xu, P. P., Chen, Q. W., Zhao, Y. L. Missing-linker-confined single-atomic Pt nanozymes for enzymatic theranostics of tumor. Angewandte Chemie International Edition, 2023, 62(19): e202217995. https://doi.org/10.1002/anie.202217995
DOI
[97]
J. Zhou, D.T. Xu, G. Tian, et al. Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific therapy. Journal of the American Chemical Society, 145(7): 4279–4293.
DOI
[98]
T. Chen, X. Luo, L. Zhu, et al. Biomimetic single-atom nanozyme system for efficient inhibition of gastric cancer ascites via SO2 gas-enhanced nanocatalytic cancer therapy. Chemical Engineering Journal, 2023, 467: 143386.
DOI
[99]

W.C. Wei. Single-atom nanozymes towards central nervous system diseases. Nano Research, 2023, 16(4): 5121−5139. https://doi.org/10.1007/s12274-022-5104-x

[100]

K. Chen, S. Sun, J.Y. Wang, et al. Catalytic nanozymes for central nervous system disease. Coordination Chemistry Reviews, 2021, 432: 213751. https://doi.org/10.1016/j.ccr.2020.213751

[101]

P. Muhammad, S. Hanif, J. Li, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today, 2022, 45: 101530. https://doi.org/10.1016/j.nantod.2022.101530

[102]

J.Q. Xi, R.F. Zhang, L.M. et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Advanced Functional Materials, 2021, 31(9): 2007130. https://doi.org/10.1002/adfm.202007130

[103]

B. Huang, T. Tang, S.H. Chen, et al. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nature Communications, 2023, 14: 197. https://doi.org/10.1038/s41467-023-35868-8

[104]

B.W. Li, Y. Bai, C. Yion, et al. Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano, 2023, 17(8): 7511−7529. https://doi.org/10.1021/acsnano.2c12614

[105]

Y.X. Jiang, H.T. Rong, Y.F. Wang, et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Research, 2023, 16(7): 9752−9759. https://doi.org/10.1007/s12274-023-5588-z

[106]

Q.Q. Xu, Y.S. Hua, Y.T. Zhang, et al. A biofilm microenvironment-activated single-atom iron nanozyme with NIR-controllable nanocatalytic activities for synergetic bacteria-infected wound therapy. Advanced Healthcare Materials, 2021, 10(22): 2101374. https://doi.org/10.1002/adhm.202101374

[107]
W. Xu, B. Sun, F. Wu, et al. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chemical Engineering Journal, 2022, 438: 135636. https://doi.org/10.1016/j.cej.2022.135636
DOI
[108]
J.Y. Zhang, M.D. Lv, X.Y. Wang, et al. An immunomodulatory biomimetic single-atomic nanozyme for biofilm wound healing management. Small, 2023: e2302587.
DOI
[109]

J. Hu, T. Wei, H. Zhao et al. Mechanically active adhesive and immune regulative dressings for wound closure. Matter, 2021, 4(9): 2985−3000. https://doi.org/10.1016/j.matt.2021.06.044

[110]

J.F. Zhu, Q.T. Jin, H. Zhao, et al. Reactive oxygen species scavenging sutures for enhanced wound sealing and repair. Small Structures, 2021, 2(7): 2100002. https://doi.org/10.1002/sstr.202100002

[111]

E.M. Tottoli, R. Dorati, I. Genta, et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 2020, 12(8): 735. https://doi.org/10.3390/pharmaceutics12080735

[112]

G.D. Li, C.N. Ko, D. Li, et al. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nature Communications, 2021, 12: 3363. https://doi.org/10.1038/s41467-021-23448-7

[113]

Z.W. Liu, F.M. Wang, J.S. Ren, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 2019, 208: 21−31. https://doi.org/10.1016/j.biomaterials.2019.04.007

[114]

G.M. Li, H. Liu, T.D. Hu, et al. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. Journal of the American Chemical Society, 2023, 145(30): 16835−16842. https://doi.org/10.1021/jacs.3c05162

[115]

M.F. Huo, L.Y. Wang, H.X. Zhang, et al. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small, 2019, 15(31): 1901834. https://doi.org/10.1002/smll.201901834

[116]

Y. Zhao, Y.P. Yu, F. Gao, et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Research, 2021, 14(12): 4808−4813. https://doi.org/10.1007/s12274-021-3432-x

[117]

Y. Liu, J.D. Wu, Y.H. Jin, et al. Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Advanced Functional Materials, 2019, 29(50): 1904678. https://doi.org/10.1002/adfm.201904678

[118]

X. Cai, M. Jin, L. Yao, et al. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers. Journal of Materials Chemistry B, 2023, 11(4): 716−733. https://doi.org/10.1039/d2tb02001g

[119]

L.M. Qin, J. Gan, D.C. Niu, et al. Interfacial-confined coordination to single-atom nanotherapeutics. Nature Communications, 2022, 13: 91. https://doi.org/10.1038/s41467-021-27640-7

[120]

R.A. Bapat, A. Parolia, T. Chaubal, et al. Recent update on potential cytotoxicity, biocompatibility and preventive measures of biomaterials used in dentistry. Biomaterials Science, 2021, 9(9): 3244−3283. https://doi.org/10.1039/d1bm00233c

[121]

X.Y. Wang, Q. Chen, Y.F. Zhu, et al. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduction and Targeted Therapy, 2023, 8: 277. https://doi.org/10.1038/s41392-023-01491-8

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 September 2023
Revised: 25 September 2023
Accepted: 24 October 2023
Published: 08 December 2023
Issue date: March 2024

Copyright

© The Author(s) 2024.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91859101, 81971744, U1932107, 82001952, 11804248, 82302361 and 82302381), The National Key Research and Development Program of China (2021YFF1200700), Outstanding Youth Funds of Tianjin, National Natural Science Foundation of Tianjin (19JCZDJC34000 and 20JCYBJC00940), the Innovation Foundation of Tianjin University (2023XJC-0010), China Postdoctoral Science Foundation (2023M732601), and CAS Interdisciplinary Innovation Team (JCTD-2020-08).

Rights and permissions

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return