AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (29.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent Advances in the Bioactive Structure and Application of Single-atom Nanozymes

Shaofang ZhangXiao-Dong Zhang( )
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

Abstract

Single-atom nanozymes have attracted much attention as a new type of high-performance nanozymes. Compared with other nanozymes, single-atom nanozymes have become the most promising candidates for naturally-occurring enzymes due to their lower cost, better activity, more flexible preparation, higher atom utilization, and flexible compositional and structural modifications. Moreover, the catalytic activity of single-atom nanozymes can be precisely constructed by regulating the active center and synergistic environment. Advanced characterization techniques combined with theoretical calculations can accurately identify the enzyme-like active sites and deeply reveal structure-performance correlation. In this review, the active center and enzyme-like activities of single-atom nanozymes are comprehensively summarized along with the recent research advances in antitumor, neurological disorders, wound healing, and antimicrobial. Finally, we also explore the future opportunities and challenges for single-atom nanozymes in the design and applications.

References

[1]

X.Y. Wang, X.J. Gao, L. Qin, et al. Eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10: 704. https://doi.org/10.1038/s41467-019-08657-5

[2]

S.F. Ji, B. Jiang, H.G. Hao, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4(5): 407−417. https://doi.org/10.1038/s41929-021-00609-x

[3]

R.F. Zhang, X.Y. Yan, K.L. Fan. Nanozymes inspired by natural enzymes. Accounts of Materials Research, 2021, 2(7): 534−547. https://doi.org/10.1021/accountsmr.1c00074

[4]

H.L. Liu, Y.H. Li, S. Sun, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nature Communications, 2021, 12: 114. https://doi.org/10.1038/s41467-020-20275-0

[5]
Breslow, R. Artificial enzymes. Science, 1982, 218(4572): 532–537.
[6]

K. Chen, F.H. Arnold. Engineering new catalytic activities in enzymes. Nature Catalysis, 2020, 3(3): 203−213. https://doi.org/10.1038/s41929-019-0385-5

[7]

Z. Zhou, G. Roelfes. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nature Catalysis, 2020, 3(3): 289−294. https://doi.org/10.1038/s41929-019-0420-6

[8]

X.K. Ren, R.D. Fasan. Synergistic catalysis in an artificial enzyme. Nature Catalysis, 2020, 3(3): 184−185. https://doi.org/10.1038/s41929-020-0435-z

[9]

K.L. Fan, C.Q. Cao, Y.X. Pan, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotechnology, 2012, 7(7): 459−464. https://doi.org/10.1038/nnano.2012.90

[10]

L.Z. Gao, J. Zhuang, L. Nie, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2(9): 577−583. https://doi.org/10.1038/nnano.2007.260

[11]

J.Y. Wang, X.Y. Mu, Y.H. Li, et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking. Small, 2018, 14(13): 1703736. https://doi.org/10.1002/smll.201703736

[12]

Y.Q. Ding, G.Y. Ren, G. Wang, et al. V2O5 nanobelts mimick tandem enzymes to achieve nonenzymatic online monitoring of glucose in living rat brain. Analytical Chemistry, 2020, 92(6): 4583−4591. https://doi.org/10.1021/acs.analchem.9b05872

[13]

Wu, J., Wang, X., Wang, Q. et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial Enzymes (II). Chem. Soc. Rev., 2019, 48(4): 1004−1076. https://doi.org/10.1039/c8cs00457a

[14]

Y.B. Zhou, B.W. Liu, R.H. Yang, et al. Filling in the gaps between nanozymes and enzymes: Challenges and opportunities. Bioconjugate Chemistry, 2017, 28(12): 2903−2909. https://doi.org/10.1021/acs.bioconjchem.7b00673

[15]

S. Sun, H.L. Liu, Q. Xin, et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion. Nano Letters, 2021, 21(6): 2562−2571. https://doi.org/10.1021/acs.nanolett.0c05148

[16]

X.Y. Mu, J.Y. Wang, H. He, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Science Advances, 2021, 7(46): eabk1210. https://doi.org/10.1126/sciadv.abk1210

[17]

H.Y. Ruan, S.F. Zhang, H.G. Wang, et al. Single-atom Pd/CeO2 nanostructures for mimicking multienzyme activities. ACS Applied Nano Materials, 2022, 5(5): 6564−6574. https://doi.org/10.1021/acsanm.2c00644

[18]

M. Soh, D.W. Kang, H.G. Jeong, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angewandte Chemie International Edition, 2017, 56(38): 11399−11403. https://doi.org/10.1002/anie.201704904

[19]

Z.Z. Wang, Y. Zhang, E.G. Ju, et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nature Communications, 2018, 9: 3334. https://doi.org/10.1038/s41467-018-05798-x

[20]

X.Y. Mu, J.Y. Wang, Y.H. Li, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano, 2019, 13(2): 1870−1884. https://doi.org/10.1021/acsnano.8b08045

[21]

S.F. Zhang, Y. Liu, S. Sun, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics, 2021, 11(6): 2806−2821. https://doi.org/10.7150/thno.51912

[22]

Q. Xin, L. Wang, H.Y. Ruan, et al. Multienzyme-mimetic activity of gold/cerium oxide nanozyme. Particle &Particle Systems Characterization, 2023, 40(7): 2200203. https://doi.org/10.1002/ppsc.202200203

[23]

L.Z. Gao, K.L. Fan, X.Y. Yan. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 2017, 7(13): 3207−3227. https://doi.org/10.7150/thno.19738

[24]

Z.W. Chen, J.J. Yin, Y.T. Zhou, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6(5): 4001−4012. https://doi.org/10.1021/nn300291r

[25]

S.Y. Fu, S. Wang, X.D. Zhang, et al. Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy. Colloids and Surfaces B,Biointerfaces, 2017, 154: 239−245. https://doi.org/10.1016/j.colsurfb.2017.03.038

[26]

S. Ghosh, P. Roy, N. Karmodak, et al. Nanoisozymes: Crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angewandte Chemie International Edition, 2018, 57(17): 4510−4515. https://doi.org/10.1002/anie.201800681

[27]

Y. Duan, X.L. Zhang, F.Y. Gao, et al. Interfacial engineering of Ni/V2O3 heterostructure catalyst for boosting hydrogen oxidation reaction in alkaline electrolytes. Angewandte Chemie International Edition, 2023, 62(10): e202217275. https://doi.org/10.1002/anie.202217275

[28]

H.J. Kwon, M.Y. Cha, D. Kim, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano, 2016, 10(2): 2860−2870. https://doi.org/10.1021/acsnano.5b08045

[29]

A.L. Popov, N.R. Popova, N.V. Tarakina, et al. Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomaterials Science &Engineering, 2018, 4(7): 2453−2462. https://doi.org/10.1021/acsbiomaterials.8b00489

[30]

Y.Y. Li, X. He, J.J. Yin, et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angewandte Chemie International Edition, 2015, 54(6): 1832−1835. https://doi.org/10.1002/anie.201410398

[31]

B.T. Qiao, A.Q. Wang, X.F. Yang, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634−641. https://doi.org/10.1038/nchem.1095

[32]

G. Kyriakou, M.B. Boucher, A.D. Jewell, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209−1212. https://doi.org/10.1126/science.1215864

[33]

P.X. Liu, Y. Zhao, R.X. Qin, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352(6287): 797−801. https://doi.org/10.1126/science.aaf5251

[34]
Y. Wang, G. Jia, X. Cui, et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem, 2021, 7(2): 436–449.
[35]

A.Q. Wang, J. Li, T. Zhang. Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2018, 2(6): 65−81. https://doi.org/10.1038/s41570-018-0010-1

[36]

S. Mitchell, J. Pérez-Ramírez. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nature Communications, 2020, 11(1): 4302. https://doi.org/10.1038/s41467-020-18182-5

[37]

L.H. Shen, D.X. Ye, H.B. Zhao, et al. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Analytical Chemistry, 2021, 93(3): 1221−1231. https://doi.org/10.1021/acs.analchem.0c04084

[38]

X.H. He, Q. He, Y.C. Deng, et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nature Communications, 2019, 10: 3663. https://doi.org/10.1038/s41467-019-11619-6

[39]

Y. Xu, J. Xue, Q. Zhou, et al. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interactions. Angewandte Chemie International Edition, 2020, 59(34): 14498−14503. https://doi.org/10.1002/anie.202003949

[40]

T.F. Liu, B.W. Xiao, F. Xiang, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nature Communications, 2020, 11: 2788. https://doi.org/10.1038/s41467-020-16544-7

[41]

R.Z. Li, D.S. Wang. Understanding the structure-performance relationship of active sites at atomic scale. Nano Research, 2022, 15(8): 6888−6923. https://doi.org/10.1007/s12274-022-4371-x

[42]
J.L. Cheng, D.S. Wang. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43(6): 1380–1398.
[43]

X.B. Zheng, J.R. Yang, Z.F. Xu, et al. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angewandte Chemie International Edition, 2022, 61(32): e202205946. https://doi.org/10.1002/anie.202205946

[44]

Z. Li, Y.J. Chen, S.F. Ji, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry, 2020, 12(8): 764−772. https://doi.org/10.1038/s41557-020-0473-9

[45]

K. Jiang, M. Luo, Z.X. Liu, et al. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nature Communications, 2021, 12: 1687. https://doi.org/10.1038/s41467-021-21956-0

[46]

L. Jiao, H. Yan, Y. Wu, et al. When nanozymes meet single-atom catalysis. Angewandte Chemie International Edition, 2020, 59(7): 2565−2576. https://doi.org/10.1002/anie.201905645

[47]

Y. Wu, L. Jiao, X. Luo, et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small, 2019, 15(43): 1903108. https://doi.org/10.1002/smll.201903108

[48]

R.B. Leveson-Gower, C. Mayer, G. Roelfes. The importance of catalytic promiscuity for enzyme design and evolution. Nature Reviews Chemistry, 2019, 3(12): 687−705. https://doi.org/10.1038/s41570-019-0143-x

[49]

F.F. Cao, L. Zhang, Y.W. You, et al. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angewandte Chemie International Edition, 2020, 59(13): 5108−5115. https://doi.org/10.1002/anie.201912182

[50]

H.A. Bunzel, J.L.R. Anderson, D. Hilvert, et al. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nature Chemistry, 2021, 13(10): 1017−1022. https://doi.org/10.1038/s41557-021-00763-6

[51]

N. Kornienko, J.Z. Zhang, K.K. Sakimoto, et al. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nature Nanotechnology, 2018, 13(10): 890−899. https://doi.org/10.1038/s41565-018-0251-7

[52]

I. Drienovská, G. Roelfes. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nature Catalysis, 2020, 3(3): 193−202. https://doi.org/10.1038/s41929-019-0410-8

[53]

A.R. Poerwoprajitno, L. Gloag, J. Watt, et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5(3): 231−237. https://doi.org/10.1038/s41929-022-00756-9

[54]

M.D. Marcinkowski, M.T. Darby, J.L. Liu, et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nature Chemistry, 2018, 10(3): 325−332. https://doi.org/10.1038/nchem.2915

[55]

J. Jin, X. Han, Y.Y. Fang, et al. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Advanced Functional Materials, 2022, 32(8): 2109218. https://doi.org/10.1002/adfm.202109218

[56]

S. Liang, X.R. Deng, G.Y. Xu, et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Advanced Functional Materials, 2020, 30(13): 1908598. https://doi.org/10.1002/adfm.201908598

[57]

R.J. Yan, S. Sun, J. Yang, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano, 2019, 13(10): 11552−11560. https://doi.org/10.1021/acsnano.9b05075

[58]

S.F. Zhang, H.Y. Ruan, Q. Xin, et al. Modulation of the biocatalytic activity and selectivity of CeO2 nanozymes via atomic doping engineering. Nanoscale, 2023, 15(9): 4408−4419. https://doi.org/10.1039/d2nr05742e

[59]

B. Xu, H. Wang, W. Wang, et al. A single-atom nanozyme for wound disinfection applications. Angewandte Chemie International Edition, 2019, 58(15): 4911−4916. https://doi.org/10.1002/anie.201813994

[60]

D.D. Wang, H.H. Wu, S.Z.F. Phua, et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications, 2020, 11(1): 357. https://doi.org/10.1038/s41467-019-14199-7

[61]

Z.Y. Lyu, S.C. Ding, N. Zhang, et al. Single-atom nanozymes linked immunosorbent assay for sensitive detection of A β 1-40: A biomarker of alzheimer’s disease. Research, 2020, 2020: 4724505. https://doi.org/10.34133/2020/4724505

[62]

N. Cheng, J.C. Li, D. Liu, et al. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small, 2019, 15(48): 1901485. https://doi.org/10.1002/smll.201901485

[63]

S.F. Zhang, Y.H. Li, S. Sun, et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nature Communications, 2022, 13: 4744. https://doi.org/10.1038/s41467-022-32411-z

[64]

M.F. Huo, L.Y. Wang, Y.W. Wang, et al. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano, 2019, 13(2): 2643−2653. https://doi.org/10.1021/acsnano.9b00457

[65]

L. Jiao, J.B. Wu, H. Zhong, et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catalysis, 2020, 10(11): 6422−6429. https://doi.org/10.1021/acscatal.0c01647

[66]

R. Jiang, L. Li, T. Sheng, et al. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. Journal of the American Chemical Society, 2018, 140(37): 11594−11598. https://doi.org/10.1021/jacs.8b07294

[67]

Y.B. Li, M. Li, J. Lu, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198−9205. https://doi.org/10.1021/acsnano.9b03530

[68]

L. Jiao, H.Y. Yan, W.Q. Xu, et al. Self-assembly of all-inclusive allochroic nanoparticles for the improved ELISA. Analytical Chemistry, 2019, 91(13): 8461−8465. https://doi.org/10.1021/acs.analchem.9b01527

[69]

Y. Xiong, J.C. Dong, Z.Q. Huang, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390−397. https://doi.org/10.1038/s41565-020-0665-x

[70]

R.Z. Tian, H.Y. Ma, W. Ye, et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Advanced Functional Materials, 2022, 32(36): 2204025. https://doi.org/10.1002/adfm.202204025

[71]

J.Z. Qin, B. Han, X.X. Liu, et al. An enzyme-mimic single Fe-N3 atom catalyst for the oxidative synthesis of nitriles via C─C bond cleavage strategy. Science Advances, 2022, 8(40): eadd1267. https://doi.org/10.1126/sciadv.add1267

[72]
L. Jiao, Y. Kang, Y. Chen, et al. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today, 2021, 40: 101261.
[73]

M.M. Tong, F.F. Sun, Y. Xie, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu−N4 and Zn−N4 for promoting oxygen reduction reaction. Angewandte Chemie International Edition, 2021, 60(25): 14005−14012. https://doi.org/10.1002/anie.202102053

[74]

L. Huang, J. Chen, L. Gan, et al. Single-atom nanozymes. Science Advances, 2019, 5(5): eaav5490. https://doi.org/10.1126/sciadv.aav5490

[75]

S.M. Younan, Z.D. Li, X.X. Yan, et al. Zinc single atom confinement effects on catalysis in 1T-phase molybdenum disulfide. ACS Nano, 2023, 17(2): 1414−1426. https://doi.org/10.1021/acsnano.2c09918

[76]

Y. Wang, K. Qi, S.S. Yu, et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Letters, 2019, 11(1): 102. https://doi.org/10.1007/s40820-019-0324-7

[77]

X. Li, X.I. Pereira-Hernández, Y.Z. Chen, et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature, 2022, 611(7935): 284−288. https://doi.org/10.1038/s41586-022-05251-6

[78]

L. Jiao, W.Q. Xu, Y. Zhang, et al. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today, 2020, 35: 100971. https://doi.org/10.1016/j.nantod.2020.100971

[79]

C. Zhao, C. Xiong, X.K. Liu, et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chemical Communications, 2019, 55(16): 2285−2288. https://doi.org/10.1039/c9cc00199a

[80]

L. Jiao, W.Q. Xu, H.Y. Yan, et al. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Analytical Chemistry, 2019, 91(18): 11994−11999. https://doi.org/10.1021/acs.analchem.9b02901

[81]
P. Peng, L. Shi, F. Huo, et al. In situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery. ACS Nano, 2019, 13(1): 878–884.
[82]

M.S. Kim, J.S. Lee, H.S. Kim, et al. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Advanced Functional Materials, 2020, 30(1): 1905410. https://doi.org/10.1002/adfm.201905410

[83]

W.J. Ma, J.J. Mao, X.T. Yang, et al. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2018, 55(2): 159−162. https://doi.org/10.1039/C8CC08116F

[84]

S.J. Cao, Z.Y. Zhao, Y.J. Zheng, et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Advanced Materials, 2022, 34(16): 2200255. https://doi.org/10.1002/adma.202200255

[85]

Y.M. Zhao, P.C. Zhang, C. Xu, et al. Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Applied Materials &Interfaces, 2020, 12(15): 17334−17342. https://doi.org/10.1021/acsami.9b20711

[86]

Y. Pan, Y.J. Chen, K.L. Wu, et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10: 4290. https://doi.org/10.1038/s41467-019-12362-8

[87]

J.T. Liu, J. Huang, L. Zhang, et al. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chemical Society Reviews, 2021, 50(2): 1188−1218. https://doi.org/10.1039/D0CS00178C

[88]

X. Liang, Z.Y. Li, H. Xiao, et al. Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chemistry of Materials, 2021, 33(14): 5542−5554. https://doi.org/10.1021/acs.chemmater.1c00235

[89]

J.S. Huang, Q.Q. Lu, X. Ma, et al. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. Journal of Materials Chemistry A, 2018, 6(38): 18488−18497. https://doi.org/10.1039/C8TA06455E

[90]

B.L. Xu, S.S. Li, L.R. Zheng, et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Advanced Materials, 2022, 34(15): 2107088. https://doi.org/10.1002/adma.202107088

[91]

H.N. Zhang, J. Li, S.B. Xi, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871−14876. https://doi.org/10.1002/anie.201906079

[92]

C.Q. Wu, S.Q. Ding, D.B. Liu, et al. A unique Ru-N4-P coordinated structure synergistically waking up the nonmetal P active site for hydrogen production. Research, 2020, 2020: 5860712. https://doi.org/10.34133/2020/5860712

[93]

Y.J. Chen, B. Jiang, H.G. Hao, et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angewandte Chemie International Edition, 2023, 62(19): e202301879. https://doi.org/10.1002/anie.202301879

[94]

Y.J. Chen, P.X. Wang, H.G. Hao, et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. Journal of the American Chemical Society, 2021, 143(44): 18643−18651. https://doi.org/10.1021/jacs.1c08581

[95]

X. Wang, Q. Shi, Z. Zha, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria‐infected wound therapy. Bioactive Materials, 2021, 6(12): 4389−4401. https://doi.org/10.1016/j.bioactmat.2021.04.024

[96]
D.D. Wang, L. Zhang, C.L. Wang, , Cheng, Z. Y., Zheng, W., Xu, P. P., Chen, Q. W., Zhao, Y. L. Missing-linker-confined single-atomic Pt nanozymes for enzymatic theranostics of tumor. Angewandte Chemie International Edition, 2023, 62(19): e202217995. https://doi.org/10.1002/anie.202217995
[97]
J. Zhou, D.T. Xu, G. Tian, et al. Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific therapy. Journal of the American Chemical Society, 145(7): 4279–4293.
[98]
T. Chen, X. Luo, L. Zhu, et al. Biomimetic single-atom nanozyme system for efficient inhibition of gastric cancer ascites via SO2 gas-enhanced nanocatalytic cancer therapy. Chemical Engineering Journal, 2023, 467: 143386.
[99]

W.C. Wei. Single-atom nanozymes towards central nervous system diseases. Nano Research, 2023, 16(4): 5121−5139. https://doi.org/10.1007/s12274-022-5104-x

[100]

K. Chen, S. Sun, J.Y. Wang, et al. Catalytic nanozymes for central nervous system disease. Coordination Chemistry Reviews, 2021, 432: 213751. https://doi.org/10.1016/j.ccr.2020.213751

[101]

P. Muhammad, S. Hanif, J. Li, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today, 2022, 45: 101530. https://doi.org/10.1016/j.nantod.2022.101530

[102]

J.Q. Xi, R.F. Zhang, L.M. et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Advanced Functional Materials, 2021, 31(9): 2007130. https://doi.org/10.1002/adfm.202007130

[103]

B. Huang, T. Tang, S.H. Chen, et al. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nature Communications, 2023, 14: 197. https://doi.org/10.1038/s41467-023-35868-8

[104]

B.W. Li, Y. Bai, C. Yion, et al. Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano, 2023, 17(8): 7511−7529. https://doi.org/10.1021/acsnano.2c12614

[105]

Y.X. Jiang, H.T. Rong, Y.F. Wang, et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Research, 2023, 16(7): 9752−9759. https://doi.org/10.1007/s12274-023-5588-z

[106]

Q.Q. Xu, Y.S. Hua, Y.T. Zhang, et al. A biofilm microenvironment-activated single-atom iron nanozyme with NIR-controllable nanocatalytic activities for synergetic bacteria-infected wound therapy. Advanced Healthcare Materials, 2021, 10(22): 2101374. https://doi.org/10.1002/adhm.202101374

[107]
W. Xu, B. Sun, F. Wu, et al. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chemical Engineering Journal, 2022, 438: 135636. https://doi.org/10.1016/j.cej.2022.135636
[108]
J.Y. Zhang, M.D. Lv, X.Y. Wang, et al. An immunomodulatory biomimetic single-atomic nanozyme for biofilm wound healing management. Small, 2023: e2302587.
[109]

J. Hu, T. Wei, H. Zhao et al. Mechanically active adhesive and immune regulative dressings for wound closure. Matter, 2021, 4(9): 2985−3000. https://doi.org/10.1016/j.matt.2021.06.044

[110]

J.F. Zhu, Q.T. Jin, H. Zhao, et al. Reactive oxygen species scavenging sutures for enhanced wound sealing and repair. Small Structures, 2021, 2(7): 2100002. https://doi.org/10.1002/sstr.202100002

[111]

E.M. Tottoli, R. Dorati, I. Genta, et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 2020, 12(8): 735. https://doi.org/10.3390/pharmaceutics12080735

[112]

G.D. Li, C.N. Ko, D. Li, et al. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nature Communications, 2021, 12: 3363. https://doi.org/10.1038/s41467-021-23448-7

[113]

Z.W. Liu, F.M. Wang, J.S. Ren, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 2019, 208: 21−31. https://doi.org/10.1016/j.biomaterials.2019.04.007

[114]

G.M. Li, H. Liu, T.D. Hu, et al. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. Journal of the American Chemical Society, 2023, 145(30): 16835−16842. https://doi.org/10.1021/jacs.3c05162

[115]

M.F. Huo, L.Y. Wang, H.X. Zhang, et al. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small, 2019, 15(31): 1901834. https://doi.org/10.1002/smll.201901834

[116]

Y. Zhao, Y.P. Yu, F. Gao, et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Research, 2021, 14(12): 4808−4813. https://doi.org/10.1007/s12274-021-3432-x

[117]

Y. Liu, J.D. Wu, Y.H. Jin, et al. Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Advanced Functional Materials, 2019, 29(50): 1904678. https://doi.org/10.1002/adfm.201904678

[118]

X. Cai, M. Jin, L. Yao, et al. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers. Journal of Materials Chemistry B, 2023, 11(4): 716−733. https://doi.org/10.1039/d2tb02001g

[119]

L.M. Qin, J. Gan, D.C. Niu, et al. Interfacial-confined coordination to single-atom nanotherapeutics. Nature Communications, 2022, 13: 91. https://doi.org/10.1038/s41467-021-27640-7

[120]

R.A. Bapat, A. Parolia, T. Chaubal, et al. Recent update on potential cytotoxicity, biocompatibility and preventive measures of biomaterials used in dentistry. Biomaterials Science, 2021, 9(9): 3244−3283. https://doi.org/10.1039/d1bm00233c

[121]

X.Y. Wang, Q. Chen, Y.F. Zhu, et al. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduction and Targeted Therapy, 2023, 8: 277. https://doi.org/10.1038/s41392-023-01491-8

Nano Biomedicine and Engineering
Pages 1-27
Cite this article:
Zhang S, Zhang X-D. Recent Advances in the Bioactive Structure and Application of Single-atom Nanozymes. Nano Biomedicine and Engineering, 2024, 16(1): 1-27. https://doi.org/10.26599/NBE.2023.9290047

1654

Views

221

Downloads

10

Crossref

8

Scopus

Altmetrics

Received: 08 September 2023
Revised: 25 September 2023
Accepted: 24 October 2023
Published: 08 December 2023
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return