Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the realm of pharmaceutical advancement, the transformative prowess of nanotechnology shines through its precision-targeted drug delivery and amplified therapeutic effects. This paper ventures into the realm of radiolabeling techniques for unraveling the intricate choreography of drug kinetics within the bloodstream which encompass the delicate stages of absorption, distribution, metabolism, and excretion. Through the magical lens of the radiolabel, a real-time spectacle unfolds, providing invaluable insights into the safety and efficacy of nanomedicine interventions. Amid the labyrinthine complexities of drug-organism interactions and the lack of universal protocols for nanomedicine preparation, radiolabeling technology has emerged as a guiding constellation. The paper systematically assesses the methods commonly employed for pharmacokinetic studies, delves into the manifold advantages and techniques of radiolabel methods within the nanomedicine landscape, closely examines their application across a spectrum of pharmacokinetic studies and thoughtfully addresses the challenges they may pose. Embark on this illuminating odyssey—a journey that peers into the microcosm of nanomedicine, deciphering its dynamic interplay within the bloodstream through the luminary insights of radiolabeled tracing techniques.
B.Y.S. Kim, J.T. Rutka, W.C.W. Chan. Nanomedicine. New England Journal of Medicine, 2010, 363(25): 2434−2443. https://doi.org/10.1056/nejmra0912273
E. Blanco, H.F. Shen, M. Ferrari. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 2015, 33(9): 941−951. https://doi.org/10.1038/nbt.3330
J.S. Suk, Q.G. Xu, N. Kim, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 2016, 99: 28−51. https://doi.org/10.1016/j.addr.2015.09.012
C.H.J. Choi, C.A. Alabi, P. Webster, et al. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 1235−1240. https://doi.org/10.1073/pnas.0914140107
D.E. Owens III, N.A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 2006, 307(1): 93−102. https://doi.org/10.1016/j.ijpharm.2005.10.010
S.-D. Li, L. Huang. Pharmacokinetics and biodistribution of nanoparticles. Molecular Pharmaceutics, 2008, 5(4): 496−504. https://doi.org/10.1021/mp800049w
N. Bertrand, J. Wu, X.Y. Xu, et al. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66: 2−25. https://doi.org/10.1016/j.addr.2013.11.009
B.W. Heimer, B.E. Tam, A. Minkovsky, et al. Using nanobiotechnology to increase the prevalence of epigenotyping assays in precision medicine. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2017, 9(1): e1407. https://doi.org/10.1002/wnan.1407
S.J. Yong, A. Veerakumarasivam, W.L. Lim, et al. Neuroprotective effects of lactoferrin in alzheimer’s and parkinson’s diseases: A narrative review. ACS Chemical Neuroscience, 2023, 14(8): 1342−1355. https://doi.org/10.1021/acschemneuro.2c00679
B.J. Du, M.X. Yu, J. Zheng. Transport and interactions of nanoparticles in the kidneys. Nature Reviews Materials, 2018, 3(10): 358−374. https://doi.org/10.1038/s41578-018-0038-3
W. Xiao, Luo, T. Jain, et al. Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer. International Journal of Nanomedicine, 2012, 2012: 1587−1597. https://doi.org/10.2147/IJN.S29306
Y. Xing, J.H. Zhao, P.S. Conti, et al. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics, 2014, 4(3): 290−306. https://doi.org/10.7150/thno.7341
X.L. Sun, W.B. Cai, X.Y. Chen. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Accounts of Chemical Research, 2015, 48(2): 286−294. https://doi.org/10.1021/ar500362y
M. Ahmadi, M. Emzhik, M. Mosayebnia. Nanoparticles labeled with gamma-emitting radioisotopes: An attractive approach for in vivo tracking using SPECT imaging. Drug Delivery and Translational Research, 2023, 13: 1546−1583. https://doi.org/10.1007/s13346-023-01291-1
L. Arms, D.W. Smith, J. Flynn, et al. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Frontiers in Pharmacology, 2018, 9: 802. https://doi.org/10.3389/fphar.2018.00802
X.Y. Wang, Y.L. Fan, J.J. Yan et al. Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chemical Engineering Journal, 2022, 439: 135661. https://doi.org/10.1016/j.cej.2022.135661
P.S. Choi, J.Y. Lee, S.D. Yang, et al. Biological behavior of nanoparticles with Zr-89 for cancer targeting based on their distinct surface composition. Journal of Materials Chemistry B, 2021, 9(39): 8237−8245. https://doi.org/10.1039/d1tb01473k
S. Díez-Villares, L. García-Varela, S.G.D. Antas, et al. Quantitative PET tracking of intra-articularly administered 89Zr-peptide-decorated nanoemulsions. Journal of Controlled Release, 2023, 356: 702−713. https://doi.org/10.1016/j.jconrel.2023.03.025
P. Desai, R. Rimal, S.E.M. Sahnoun, et al. Radiolabeled nanocarriers as theranostics—Advancement from peptides to nanocarriers. Small, 2022, 18(25): e2200673. https://doi.org/10.1002/smll.202200673
J.X. Ge, Q.Y. Zhang, J.F. Zeng, et al. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 2020, 228: 119553. https://doi.org/10.1016/j.biomaterials.2019.119553
M. Goel, Y. Mackeyev, S. Krishnan. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts. Cancer Nanotechnology, 2023, 14(1): 15. https://doi.org/10.1186/s12645-023-00165-y
J. Lamb, J.P. Holland. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. Journal of Nuclear Medicine, 2018, 59(3): 382−389. https://doi.org/10.2967/jnumed.116.187419
D.L. Ni, D.W. Jiang, E.B. Ehlerding, et al. Radiolabeling silica-based nanoparticles via coordination chemistry: Basic principles, strategies, and applications. Accounts of Chemical Research, 2018, 51(3): 778−788. https://doi.org/10.1021/acs.accounts.7b00635
D. Sneddon, B. Cornelissen. Emerging chelators for nuclear imaging. Current Opinion in Chemical Biology, 2021, 63: 152−162. https://doi.org/10.1016/j.cbpa.2021.03.001
J. Pellico, P.J. Gawne, R.T.M. de Rosales. Radiolabelling of nanomaterials for medical imaging and therapy. Chemical Society Reviews, 2021, 50(5): 3355−3423. https://doi.org/10.1039/d0cs00384k
J. Martínez, T. Baciu, M. Artigues, et al. Nuclear medicine: Workplace monitoring and internal occupational exposure during a ventilation/perfusion single-photon emission tomography. Radiation and Environmental Biophysics, 2019, 58(3): 407−415. https://doi.org/10.1007/s00411-019-00798-x
E.T. te Beek, J. Burggraaf, J.J.M. Teunissen, et al. Clinical pharmacology of radiotheranostics in oncology. Clinical Pharmacology &Therapeutics, 2023, 113(2): 260−274. https://doi.org/10.1002/cpt.2598
P. Zanzonico, L. Dauer, J. St. Germain. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities. Health Physics, 2008, 95(5): 554−570. https://doi.org/10.1097/01.hp.0000327651.15794.f7
S. Ravindran, J.K. Suthar, R. Rokade, et al. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Current Drug Metabolism, 2018, 19(4): 327−334.[PubMed]. https://doi.org/10.2174/1389200219666180305154119
V. Lebreton, S. Legeay, P. Saulnier, et al. Specificity of pharmacokinetic modeling of nanomedicines. Drug Discovery Today, 2021, 26(10): 2259−2268. https://doi.org/10.1016/j.drudis.2021.04.017
Y.L. Fan, D.H. Pan, M. Yang, et al. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology: A review. Science of the Total Environment, 2023, 866: 161412. https://doi.org/10.1016/j.scitotenv.2023.161412
M.J. Ernsting, M. Murakami, A. Roy, et al. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release, 2013, 172(3): 782−794. https://doi.org/10.1016/j.jconrel.2013.09.013
J.E. Riviere. Pharmacokinetics of nanomaterials: An overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2009, 1(1): 26−34. https://doi.org/10.1002/wnan.24
S.M. Moghimi, A.C. Hunter, J.C. Murray. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 2001, 53(2): 283−318.
J. Fang, H. Nalamura, H. Maeda. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 2011, 63(3): 136−151. https://doi.org/10.1016/j.addr.2010.04.009
F. Alexis, E. Pridgen, L.K. Molnar, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 2008, 5(4): 505−515. https://doi.org/10.1021/mp800051m
H. Maeda. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chemistry, 2010, 21(5): 797−802. https://doi.org/10.1021/bc100070g
C. Wilhelmy, I.S. Keil, L. Uebbing, et al. Polysarcosine-functionalized mRNA lipid nanoparticles tailored for immunotherapy. Pharmaceutics, 2023, 15(8): 2068. https://doi.org/10.3390/pharmaceutics15082068
P. Ma, R.J. Mumper. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today, 2013, 8(3): 313−331. https://doi.org/10.1016/j.nantod.2013.04.006
E.L. Chang, J.C. Bu, L.L. Ding, et al. Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy. Journal of Nanobiotechnology, 2021, 19(1): 154. https://doi.org/10.1186/s12951-021-00898-1
A. Huang, S.J. Kennel, L. Huang. Interactions of immunoliposomes with target cells. Journal of Biological Chemistry, 1983, 258(22): 14034−14040. https://doi.org/10.1016/s0021-9258(17)44020-8
R.M. Straubinger, K. Hong, D., Friend, et al. Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with a low pH compartment after internalization in coated vesicles. Cell, 1983, 32(4): 1069−1079. https://doi.org/10.1016/0092-8674(83)90291-X
Z.X. Jiang, J.C. Liu, J. Guan, et al. Self-adjuvant effect by manipulating the bionano interface of liposome-based nanovaccines. Nano Letters, 2021, 21(11): 4744−4752. https://doi.org/10.1021/acs.nanolett.1c01133
Z.X. Jiang, J. Guan, J. Qian, et al. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomaterials Science, 2019, 7(2): 461−471. https://doi.org/10.1039/c8bm01340c
A. Huang, S.J. Kennel, L. Huang. Immunoliposome labeling: A sensitive and specific method for cell surface labeling. Journal of Immunological Methods, 1981, 46(2): 141−151. https://doi.org/10.1016/0022-1759(81)90131-9
Z. Zhang, J. Guan, Z.X. Jiang, et al. Brain-targeted drug delivery by manipulating protein corona functions. Nature Communications, 2019, 10: 3561. https://doi.org/10.1038/s41467-019-11593-z
S. Simões, J.N. Moreira, C. Fonseca, et al. On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews, 2004, 56(7): 947−965. https://doi.org/10.1016/j.addr.2003.10.038
D.D. Lasic, J.J. Vallner, P.K. Working. Sterically stabilized liposomes in cancer therapy and gene delivery. Current Opinion in Molecular Therapeutics, 1999, 1(2): 177−185.
Y. Duan, L.H. Wei, J. Petryk, et al. Formulation, characterization and tissue distribution of a novel pH-sensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. International Journal of Nanomedicine, 2016, 11: 5697−5708. https://doi.org/10.2147/ijn.s111274
A. Cabanes, K.E. Briggs, P.C. Gokhale, et al. Comparative in vivo studies with paclitaxel and liposome-encapsulated paclitaxel. International Journal of Oncology, 1998, 12(5): 1035−1040. https://doi.org/10.3892/ijo.12.5.1035
N. Biswarup, M. A.S., K. Chuttani, et al. Acylated chitosan anchored paclitaxel loaded liposomes: Pharmacokinetic and biodistribution study in Ehrlich ascites tumor bearing mice. International Journal of Biological Macromolecules, 2019, 122: 367−379. https://doi.org/10.1016/j.ijbiomac.2018.10.071
S. Unnam, V.M. Panduragaiah, M.A. Sidramappa, et al. Gemcitabine-loaded folic acid tagged liposomes: Improved pharmacokinetic and biodistribution profile. Current Drug Delivery, 2019, 16(2): 111−122. https://doi.org/10.2174/1567201815666181024112252
A.L. Petersen, T. Binderup, R.I. Jølck, et al. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. Journal of Controlled Release, 2012, 160(2): 254−263. https://doi.org/10.1016/j.jconrel.2011.12.038
M. Liu, R.F. Wang, P. Yan, et al. Molecular imaging and pharmacokinetics of 99mTc-hTERT antisense oligonucleotide as a potential tumor imaging probe. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57(2): 97−101. https://doi.org/10.1002/jlcr.3171
J.W. Seo, L.M. Mahakian, S. Tam, et al. The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nuclear Medicine and Biology, 2015, 42(2): 155−163. https://doi.org/10.1016/j.nucmedbio.2014.09.001
S. Haque, O. Feeney, E. Meeusen, et al. Local inflammation alters the lung disposition of a drug loaded pegylated liposome after pulmonary dosing to rats. Journal of Controlled Release, 2019, 307: 32−43. https://doi.org/10.1016/j.jconrel.2019.05.043
H. Fonge, H. Huang, D. Scolland, et al. Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles. Journal of Controlled Release, 2012, 157(3): 366−374. https://doi.org/10.1016/j.jconrel.2011.09.088
H. Choi, T. Liu, H. Qiao, et al. Biomimetic nano-surfactant stabilizes sub-50 nanometer phospholipid particles enabling high paclitaxel payload and deep tumor penetration. Biomaterials, 2018, 181: 240−251. https://doi.org/10.1016/j.biomaterials.2018.07.034
G. Sharma, D.T. Valenta, Y. Altman, et al. Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release, 2010, 147(3): 408−412. https://doi.org/10.1016/j.jconrel.2010.07.116
E. Markovsky, H. Baabur-Cohen, A. Eldar-Boock, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. Journal of Controlled Release, 2012, 161(2): 446−460. https://doi.org/10.1016/j.jconrel.2011.12.021
S. Venkataraman, J.L. Hedrick, Z.Y. Ong, et al. The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 2011, 63(14-15): 1228−1246. https://doi.org/10.1016/j.addr.2011.06.016
J.A. Champion, S. Mitragotri. Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 4930−4934. https://doi.org/10.1073/pnas.0600997103
P. Decuzzi, B. Godin, T. Tanaka, et al. Size and shape effects in the biodistribution of intravascularly injected particles. Journal of Controlled Release, 2010, 141(3): 320−327. https://doi.org/10.1016/j.jconrel.2009.10.014
L.M. Kaminskas, B.D. Kelly, V.M. McLeod, et al. Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Molecular Pharmaceutics, 2009, 6(4): 1190−1204. https://doi.org/10.1021/mp900049a
L.M. Kaminskas, B.J. Boyd, P. Karellas, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Molecular Pharmaceutics, 2008, 5(3): 449−463. https://doi.org/10.1021/mp7001208
R. Khandelia, S. Bhandari, U.N. Pan, et al. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small, 2015, 11(33): 4075−4081. https://doi.org/10.1002/smll.201500216
L.E. Cole, R.D. Ross, J.M. Tilley, et al. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine, 2015, 10(2): 321−341. https://doi.org/10.2217/nnm.14.171
D. Xi, S. Dong, X.X. Meng, et al. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Advances, 2012, 2(33): 12515. https://doi.org/10.1039/c2ra21263c
J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz. The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine &Biology, 2004, 49(18): N309. https://doi.org/10.1088/0031-9155/49/18/N03
T.S. Lan, D.X. Cui, T.Y. Liu, et al. Gold NanoStars: Synthesis, modification and application. Nano Biomedicine and Engineering, 2023, 29: 330−341. https://doi.org/10.26599/nbe.2023.9290025
J.F. Guo, K. Rahme, Y. He, et al. Gold nanoparticles enlighten the future of cancer theranostics. International Journal of Nanomedicine, 2017, 12: 6131−6152. https://doi.org/10.2147/ijn.s140772
D.V. Peralta, Z. Heidari, S. Dash, et al. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. ACS Applied Materials &Interfaces, 2015, 7(13): 7101−7111. https://doi.org/10.1021/acsami.5b00858
C.C. Chen, J.J. Li, N.H. Guo, et al. Evaluation of the biological behavior of a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP) in a CT-26 tumor/ascites mouse model after intravenous/intraperitoneal administration. International Journal of Molecular Sciences, 2019, 20(1): 217. https://doi.org/10.3390/ijms20010217
S. Laurent, S. Boutry, I. Mahieu, et al. Iron oxide based MR contrast agents: From chemistry to cell labeling. Current Medicinal Chemistry, 2009, 16(35): 4712−4727. https://doi.org/10.2174/092986709789878256
D.L.J. Thorek, A.K. Chen, J. Czupryna, et al. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering, 2006, 34(1): 23−38. https://doi.org/10.1007/s10439-005-9002-7
F.J. Liu, S. Laurent, H. Fattahi, et al. Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine, 2011, 6(3): 519−528. https://doi.org/10.2217/nnm.11.16
B. Freund, U.I. Tromsdorf, O.T. Bruns, et al. A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano, 2012, 6(8): 7318−7325. https://doi.org/10.1021/nn3024267
E. Phillips, O. Penate-Medina, P.B. Zanzonico, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Science Translational Medicine, 2014, 6(260): e3009524. https://doi.org/10.1126/scitranslmed.3009524
C.H.J. Choi, J.E. Zuckerman, P. Webster, et al. Targeting kidney mesangium by nanoparticles of defined size. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6656−6661. https://doi.org/10.1073/pnas.1103573108
A.A. Burns, J. Vider, H. Ow, et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Letters, 2009, 9(1): 442−448. https://doi.org/10.1021/nl803405h
V. Negri, J. Pacheco-Torres, D. Calle, et al. Carbon nanotubes in biomedicine. Topics in Current Chemistry, 2020, 378: 15. https://doi.org/10.1007/s41061-019-0278-8
H. Feng, Z.S. Qian. Functional carbon quantum dots: A versatile platform for chemosensing and biosensing. The Chemical Record, 2018, 18(5): 491−505. https://doi.org/10.1002/tcr.201700055
J.J. Du, N. Xu, J.L. Fan, et al. Carbon dots for in vivo bioimaging and theranostics. Small, 2019, 15(32): 1805087. https://doi.org/10.1002/smll.201805087
N. Liu, Y.Y. Shi, J.R. Guo, et al. Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor. Nano Research, 2019, 12(12): 3037−3043. https://doi.org/10.1007/s12274-019-2549-7
J. Li, A.A. Green, H. Yan, et al. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nature Chemistry, 2017, 9(11): 1056−1067. https://doi.org/10.1038/nchem.2852
A. Gopinath, E. Miyazono, A. Faraon, et al. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535(7612): 401−405. https://doi.org/10.1038/nature18287
H.L. Zhang, J. Chao, D. Pan, et al. DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nature Communications, 2017, 8: 14738. https://doi.org/10.1038/ncomms14738
M.H. Lin, J.J. Wang, G.B. Zhou, et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angewandte Chemie International Edition, 2015, 54(7): 2151−2155. https://doi.org/10.1002/anie.201410720
D.W. Jiang, Z.L. Ge, H.J. Im, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2(11): 865−877. https://doi.org/10.1038/s41551-018-0317-8
R.P. Goodman, I.A.T. Schaap, C.F. Tardin, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754): 1661−1665. https://doi.org/10.1126/science.1120367
H. Lee, A.K.R. Lytton-Jean, Y. Chen, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, 2012, 7(6): 389−393. https://doi.org/10.1038/nnano.2012.73
D.W. Jiang, Y.H. Sun, J. Li, et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Applied Materials &Interfaces, 2016, 8(7): 4378−4384. https://doi.org/10.1021/acsami.5b10792
D.W. Jiang, H.J. Im, M.E. Boleyn, et al. Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function. Nano Research, 2019, 12(3): 637−642. https://doi.org/10.1007/s12274-019-2271-5
P.H. von Hippel, K.Y. Wong. Neutral salts: The generality of their effects on the stability of macromolecular conformations. Science, 1964, 145(3632): 577−580. https://doi.org/10.1126/science.145.3632.577
S. Kommareddy, M. Amiji. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjugate Chemistry, 2005, 16(6): 1423−1432. https://doi.org/10.1021/bc050146t
S. Kommareddy, M. Amiji. Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine:Nanotechnology,Biology and Medicine, 2007, 3(1): 32−42. https://doi.org/10.1016/j.nano.2006.11.005
J. Xu, F. Gattacceca, M. Amiji. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice. Molecular Pharmaceutics, 2013, 10(5): 2031−2044. https://doi.org/10.1021/mp400054e
S. Kommareddy, M. Amiji. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. Journal of Pharmaceutical Sciences, 2007, 96(2): 397−407. https://doi.org/10.1002/jps.20813
X.Y. Wang, J. Sheng, M. Yang. Melanin-based nanoparticles in biomedical applications: From molecular imaging to treatment of diseases. Chinese Chemical Letters, 2019, 30(3): 533−540. https://doi.org/10.1016/j.cclet.2018.10.010
J. Sheng, X.Y. Wang, J.J. Yan, et al. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. Journal of Materials Chemistry B, 2018, 6(48): 8163−8169. https://doi.org/10.1039/c8tb02817f
X.Y. Wang, J.J. Yan, D.H. Pan, et al. Polyphenol–poloxamer self-assembled supramolecular nanoparticles for tumor NIRF/PET imaging. Advanced Healthcare Materials, 2018, 7(15): 1701505. https://doi.org/10.1002/adhm.201701505
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.