AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent Progress in Electrochemical Biosensors Based on DNA-functionalized Nanomaterials

Yiruo YuDuo ChenYanbing Yang( )Quan Yuan( )
College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

Abstract

Electrochemical biosensors are characterized by rapid response, miniaturization, portability, and ease of operation. With tunable nanostructure, DNA has been comprehensively combined with electrochemical devices to design high-sensitivity and selectivity biosensors for the achievement of disease diagnosis, food safety, and environmental monitoring. In recent years, DNA-functionalized electrochemical biosensors have made significant research progress. In this article, the recent research progress of DNA-functionalized electrochemical biosensors for in vitro and in vivo disease diagnosis was reviewed. The structure and sensing principles of DNA-functionalized electrochemical biosensors were first summarized. The preparation of DNA-functionalized electrochemical biosensors based on nanomaterials was introduced in detail. Meanwhile, the latest evolution of integrated and portable DNA-functionalized electrochemical biosensors for in vitro disease diagnosis was summarized. For a further step, the construction of implantable DNA-functionalized electrochemical biosensors for in vivo and real-time disease monitoring was overviewed. Finally, the challenges and outlook of DNA-functionalized electrochemical biosensors were discussed to provide a guideline for the future development of DNA-functionalized electrochemical biosensors.

References

[1]

D.R. Thévenot, K. Toth, R.A. Durst, et al. Electrochemical biosensors: Recommended definitions and classification. Biosens Bioelectron, 2001, 16(1-2): 121−131. https://doi.org/10.1016/S0956-5663(01)00115-4

[2]

R.E. Malpas, K. Itaya, A.J. Bard. Semiconductor electrodes. 20. Photogeneration of solvated electrons on p-type gallium arsenide electrodes in liquid ammonia. Journal of the American Chemical Society, 1979, 101(10): 2535−2537. https://doi.org/10.1021/ja00504a006

[3]

D. Rodrigues, A.I. Barbosa, R. Rebelo, et al. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors, 2020, 10(7): E79. https://doi.org/10.3390/bios10070079

[4]

D. Li, C. Wu, X.H. Tang, et al. Electrochemical sensors applied for in vitro diagnosis. Chemical Research in Chinese Universities, 2021, 37(4): 803−822. https://doi.org/10.1007/s40242-021-0387-0

[5]

P. Li, G.H. Lee, S.Y. Kim, et al. From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano, 2021, 15(2): 1960−2004. https://doi.org/10.1021/acsnano.0c06688

[6]

E. Flampouri, S. Imar, K. OConnell, et al. Spheroid-3D and monolayer-2D intestinal electrochemical biosensor for toxicity/viability testing: Applications in drug screening, food safety, and environmental pollutant analysis. ACS Sensors, 2019, 4(3): 660−669. https://doi.org/10.1021/acssensors.8b01490

[7]

H. Mahmoudi-Moghaddam, Z. Garkani-Nejad. Development of the electrochemical biosensor for determination of antibiotic drug isoniazid using ds-DNA/Carbon/La3+/CuO/CPE. Measurement, 2022, 189: 110580. https://doi.org/10.1016/j.measurement.2021.110580

[8]
Lehner, B. A. E., Benz, D., Moshkalev, S. A., Meyer, A. S., Cotta, M. A., Janissen, R. Biocompatible graphene oxide nanosheets densely functionalized with biologically active molecules for biosensing applications. ACS Applied Nano Materials, 2021, 4(8): 8334–8342.
[9]

P. Yáñez-Sedeño, L. Agüí, R. Villalonga, et al. Biosensors in forensic analysis. A review. Analytica Chimica Acta, 2014, 823: 1−19. https://doi.org/10.1016/j.aca.2014.03.011

[10]

P. Bakthavathsalam, V.K. Rajendran, J.A. Baquir Mohammed. A direct detection of Escherichia coli genomic DNA using gold nanoprobes. Journal of Nanobiotechnology, 2012, 10: 8. https://doi.org/10.1186/1477-3155-10-8

[11]

I. Khalil, W.A. Yehye, N.M. Julkapli, et al. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Biosensors and Bioelectronics, 2019, 131: 214−223. https://doi.org/10.1016/j.bios.2019.02.028

[12]

P. Caillat, D. David, M. Belleville, et al. Biochips on CMOS: An active matrix address array for DNA analysis. Sensors and Actuators B:Chemical, 1999, 61(1-3): 154−162. https://doi.org/10.1016/s0925-4005(99)00287-7

[13]

H.M. Fahmy, E.S. Abu Serea, R.E. Salah-Eldin, et al. Recent progress in graphene- and related carbon-nanomaterial-based electrochemical biosensors for early disease detection. ACS Biomaterials Science &Engineering, 2022, 8(3): 964−1000. https://doi.org/10.1021/acsbiomaterials.1c00710

[14]

S. Samad Hosseini, A. Jebelli, S. Vandghanooni, et al. Perspectives and trends in advanced DNA biosensors for the recognition of single nucleotide polymorphisms. Chemical Engineering Journal, 2022, 441: 135988. https://doi.org/10.1016/j.cej.2022.135988

[15]

B. Mondal, B. N, S. Ramlal, et al. Colorimetric DNAzyme biosensor for convenience detection of enterotoxin B harboring staphylococcus aureus from food samples. Journal of Agricultural and Food Chemistry, 2018, 66(6): 1516−1522. https://doi.org/10.1021/acs.jafc.7b04820

[16]

X.Y. He, H.M. Han, W.Y. Shi, et al. A label-free electrochemical DNA biosensor for kanamycin detection based on diblock DNA with poly-cytosine as a high affinity anchor on graphene oxide. Analytical Methods, 2020, 12(27): 3462−3469. https://doi.org/10.1039/D0AY00025F

[17]
H. Sohrabi, M.R. Majidi, K. Asadpour-Zeynali, et al. Bimetallic Fe/Mn MOFs/MβCD/AuNPs stabilized on MWCNTs for developing a label-free DNA-based genosensing bio-assay applied in the determination of Salmonella typhimurium in milk samples. Chemosphere, 2022, 287(pt 4): 132373.
[18]

S. Sahu, R. Roy, R. Anand. Harnessing the potential of biological recognition elements for water pollution monitoring. ACS Sensors, 2022, 7(3): 704−715. https://doi.org/10.1021/acssensors.1c02579

[19]

H. Sohrabi, A. Hemmati, M.R. Majidi, et al. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. TrAC Trends in Analytical Chemistry, 2021, 143: 116344. https://doi.org/10.1016/j.trac.2021.116344

[20]

A. Toldrà, C. Alcaraz, J. Diogène, et al. Detection of Ostreopsis Cf. ovata in environmental samples using an electrochemical DNA-based biosensor. Science of The Total Environment, 2019, 689: 655−661. https://doi.org/10.1016/j.scitotenv.2019.06.448

[21]

A. Sassolas, B.D. Leca-Bouvier, L.J. Blum. DNA biosensors and microarrays. Chemical Reviews, 2008, 108(1): 109−139. https://doi.org/10.1021/cr0684467

[22]

E. Paleček, M. Bartošík. Electrochemistry of nucleic acids. Chemical Reviews, 2012, 112(6): 3427−3481. https://doi.org/10.1021/cr200303p

[23]

Q. He, Y. Liu, K. Li, et al. Deoxyribonucleic acid anchored on cell membranes for biomedical application. Biomaterials Science, 2021, 9(20): 6691−6717. https://doi.org/10.1039/D1BM01057C

[24]

Z. Zhuo, Y. Yu, M. Wang, et al. Recent advances in SELEX technology and aptamer applications in biomedicine. International Journal of Molecular Sciences, 2017, 18(10): E2142. https://doi.org/10.3390/ijms18102142

[25]

A.D. Keefe, S. Pai, A. Ellington. Aptamers as therapeutics. Nature Reviews Drug Discovery, 2010, 9(7): 537−550. https://doi.org/10.1038/nrd3141

[26]

D. Fan, J. Wang, E. Wang, et al. Propelling DNA computing with materials' power: Recent advancements in innovative DNA logic computing systems and smart bio-applications. Advanced Science, 2020, 7(24): 2001766. https://doi.org/10.1002/advs.202001766

[27]

A.C. Zimmermann, I.M. White, J.D. Kahn. Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta, 2020, 211: 120709. https://doi.org/10.1016/j.talanta.2019.120709

[28]

J.L. Jiang, X.Y. Cui, Y.X. Huang, et al. Advances and prospects in integrated nano-oncology. Nano Biomedicine and Engineering, 2024, 16(2): 152−187. https://doi.org/10.26599/NBE.2024.9290060

[29]

J. Chao, D. Zhu, Y.N. Zhang, et al. DNA nanotechnology-enabled biosensors. Biosensors &Bioelectronics, 2016, 76: 68−79. https://doi.org/10.1016/j.bios.2015.07.007

[30]

F.-T. Zhang, L.-Y. Cai, Y.-L. Zhou, et al. Immobilization-free DNA-based homogeneous electrochemical biosensors. TrAC Trends in Analytical Chemistry, 2016, 85: 17−32. https://doi.org/10.1016/j.trac.2016.08.012

[31]

X. Hai, Y.F. Li, C.Z. Zhu, et al. DNA-based label-free electrochemical biosensors: From principles to applications. TrAC Trends in Analytical Chemistry, 2020, 133: 116098. https://doi.org/10.1016/j.trac.2020.116098

[32]

D. Yang, M.J. Campolongo, T.N. Nhi Tran, et al. Novel DNA materials and their applications. WIREs Nanomedicine and Nanobiotechnology, 2010, 2(6): 648−669. https://doi.org/10.1002/wnan.111

[33]

D. Yang, M.R. Hartman, T.L. Derrien, et al. DNA materials: Bridging nanotechnology and biotechnology. Accounts of Chemical Research, 2014, 47(6): 1902−1911. https://doi.org/10.1021/ar5001082

[34]

Y. Li, R. Lin, L. Wang, et al. PEG-b-AGE polymer coated magnetic nanoparticle probes with facile functionalization and anti-fouling properties for reducing non-specific uptake and improving biomarker targeting. Journal of Materials Chemistry B, 2015, 3(17): 3591−3603. https://doi.org/10.1039/C4TB01828A

[35]

K. Thapa, W.Y. Liu, R.S. Wang. Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. WIREs Nanomedicine and Nanobiotechnology, 2022, 14(1): e1765. https://doi.org/10.1002/wnan.1765

[36]

E. Cesewski, B.N. Johnson. Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 2020, 159: 112214. https://doi.org/10.1016/j.bios.2020.112214

[37]

V.S.P.K. Sankara Aditya Jayanthi, A.B. Das, U. Saxena. Recent advances in biosensor development for the detection of cancer biomarkers. Biosensors and Bioelectronics, 2017, 91: 15−23. https://doi.org/10.1016/j.bios.2016.12.014

[38]

I.-H. Cho, D.H. Kim, S. Park. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomaterials Research, 2020, 24: 6. https://doi.org/10.1186/s40824-019-0181-y

[39]

P. D’Orazio. Biosensors in clinical chemistry - 2011 update. Clinica Chimica Acta, 2011, 412(19-20): 1749−1761. https://doi.org/10.1016/j.cca.2011.06.025

[40]

H. Aoki, H. Tao. Gene sensors based on peptide nucleic acid (PNA) probes: Relationship between sensor sensitivity and probe/target duplex stability. Analyst, 2005, 130(11): 1478−1482. https://doi.org/10.1039/B507121F

[41]

T.A.R. Cordeiro, M.A.C. de Resende, S.C. Dos Santos Moraes, et al. Electrochemical biosensors for neglected tropical diseases: A review. Talanta, 2021, 234: 122617. https://doi.org/10.1016/j.talanta.2021.122617

[42]

Y. Dong, C. Yao, Y. Zhu, et al. DNA functional materials assembled from branched DNA: Design, synthesis, and applications. Chemical Reviews, 2020, 120(17): 9420−9481. https://doi.org/10.1021/acs.chemrev.0c00294

[43]

X.-P. Zhao, F.-F. Liu, W.-C. Hu, et al. Biomimetic nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of microRNA in cells. Analytical Chemistry, 2019, 91(5): 3582−3589. https://doi.org/10.1021/acs.analchem.8b05536

[44]

M. Lazerges, F. Bedioui. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Analytical and Bioanalytical Chemistry, 2013, 405: 3705−3714. https://doi.org/10.1007/s00216-012-6672-5

[45]

E.O. Blair, D.K. Corrigan. A review of microfabricated electrochemical biosensors for DNA detection. Biosensors and Bioelectronics, 2019, 134: 57−67. https://doi.org/10.1016/j.bios.2019.03.055

[46]

D. Grieshaber, R. MacKenzie, J. Vörös, et al. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8(3): 1400−1458. https://doi.org/10.3390/s80314000

[47]

F. Scholz. Voltammetric techniques of analysis: The essentials. ChemTexts, 2015, 1: 17. https://doi.org/10.1007/s40828-015-0016-y

[48]

X. Luo, J.J. Davis. Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews, 2013, 42(13): 5944−5962. https://doi.org/10.1039/C3CS60077G

[49]

J.M. Wang, H. Zhou, J. Liu, et al. Electrochemical detection of DNA by formation of efficient electron transfer pathways through adsorbing gold nanoparticles to DNA modified electrodes. Microchemical Journal, 2021, 169: 106581. https://doi.org/10.1016/j.microc.2021.106581

[50]
J. Wang. Chapter 6 Stripping-based electrochemical metal sensors for environmental monitoring. In: Electrochemical Sensor Analysis. Amsterdam: Elsevier, 2007: 131–141.
[51]

Y.-P. Kim, S.J. Park, D. Lee, et al. Electrochemical glucose biosensor by electrostatic binding of PQQ-glucose dehydrogenase onto self-assembled monolayers on gold. Journal of Applied Electrochemistry, 2012, 42(6): 383−390. https://doi.org/10.1007/s10800-012-0409-1

[52]

N. Aydemir, J. Malmström, J. Travas-Sejdic. Conducting polymer based electrochemical biosensors. Physical Chemistry Chemical Physics, 2016, 18(12): 8264−8277. https://doi.org/10.1039/C5CP06830D

[53]

M.M. Rahman, X.B. Li, N.S. Lopa, et al. Electrochemical DNA hybridization sensors based on conducting polymers. Sensors, 2015, 15(2): 3801−3829. https://doi.org/10.3390/s150203801

[54]

Y. Bo, W. Wang, J. Qi, et al. A DNA biosensor based on graphene paste electrode modified with Prussian blue and chitosan. Analyst, 2011, 136(9): 1946−1951. https://doi.org/10.1039/C1AN15084G

[55]

C. Singhal, M. Khanuja, N. Chaudhary, et al. Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Scientific Reports, 2018, 8(1): 7734. https://doi.org/10.1038/s41598-018-25824-8

[56]
Z. Matharu, A.J. Bandodkar, V. Gupta, et al. Fundamentals and application of ordered molecular assemblies to affinity biosensing. Chemical Society Reviews, 2012, 41(3): 1363–1402.
[57]

H.L. Yang, Y. Zhou, J.W. Liu. G-quadruplex DNA for construction of biosensors. TrAC Trends in Analytical Chemistry, 2020, 132: 116060. https://doi.org/10.1016/j.trac.2020.116060

[58]

L. Liu, D.H. Wu, S. Zhen, et al. Electrochemical detection of telomerase in cancer cells based on the in situ formation of streptavidin-biotin-DNA-biotin networks for signal amplification. Sensors and Actuators B:Chemical, 2021, 334: 129659. https://doi.org/10.1016/j.snb.2021.129659

[59]

P.-J. Huang, J. Liu. Simultaneous detection of L-lactate and D-glucose using DNA aptamers in human blood serum. Angewandte Chemie International Edition, 2023, 62(12): e202212879. https://doi.org/10.1002/anie.202212879

[60]

T. Lee, S.Y. Park, H.J. Jang, et al. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Materials Science and Engineering C, 2019, 99: 511−519. https://doi.org/10.1016/j.msec.2019.02.001

[61]

N.D. Md Sani, E.Y. Ariffin, W. Sheryn, et al. An electrochemical DNA biosensor for carcinogenicity of anticancer compounds based on competition between methylene blue and oligonucleotides. Sensors, 2019, 19(23): 5111. https://doi.org/10.3390/s19235111

[62]

B. Liu, J. Liu. Freezing directed construction of bio/nano interfaces: Reagentless conjugation, denser spherical nucleic acids, and better nanoflares. Journal of the American Chemical Society, 2017, 139(28): 9471−9474. https://doi.org/10.1021/jacs.7b04885

[63]

R. Eivazzadeh-Keihan, E. Bahojb Noruzi, E. Chidar, et al. Applications of carbon-based conductive nanomaterials in biosensors. Chemical Engineering Journal, 2022, 442: 136183. https://doi.org/10.1016/j.cej.2022.136183

[64]

Y. Qian, H. Lin, Z.W. Yan, et al. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today, 2021, 51: 165−187. https://doi.org/10.1016/j.mattod.2021.09.014

[65]

Q. Wu, W.-S. Miao, Y.-D. Zhang, et al. Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 2020, 9(1): 259−273. https://doi.org/10.1515/ntrev-2020-0021

[66]

N. Baig, I. Kammakakam, W. Falath. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2(6): 1821−1871. https://doi.org/10.1039/D0MA00807A

[67]

Y.B. Yang, X.D. Yang, Y.N. Tan, et al. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Research, 2017, 10(5): 1560−1583. https://doi.org/10.1007/s12274-017-1476-8

[68]

Y. He, Y. Zhong, F. Peng, et al. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. Journal of the American Chemical Society, 2011, 133(36): 14192−14195. https://doi.org/10.1021/ja2048804

[69]

E.C. Welch, J.M. Powell, T.B. Clevinger, et al. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Advanced Functional Materials, 2021, 31(44): 2104126. https://doi.org/10.1002/adfm.202104126

[70]

J. Liu. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Physical Chemistry Chemical Physics, 2012, 14(30): 10485−10496. https://doi.org/10.1039/C2CP41186E

[71]

C. Singhal, A. Dubey, A. Mathur, et al. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochemistry, 2018, 74: 35−42. https://doi.org/10.1016/j.procbio.2018.08.020

[72]
N. Wongkaew, M. Simsek, Griesche, C., Baeumner, A. J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chemical Reviews, 2019, 119(1): 120–194.
[73]

L.T. Tran, H.V. Tran, T. Tran, et al. A highly sensitive electrochemical DNA sensor based on nanostructured electrode of multi-walled carbon nanotubes/manganese dioxide nano-flowers-like/polyaniline nanowires nanocomposite. Journal of the Electrochemical Society, 2021, 168(5): 057518. https://doi.org/10.1149/1945-7111/ac001b

[74]

G.P. Liu, Y.L. Yuan, S.Q. Wei, et al. Impedimetric DNA-based biosensor for silver ions detection with hemin/G-quadruplex nanowire as enhancer. Electroanalysis, 2014, 26(12): 2732−2738. https://doi.org/10.1002/elan.201400439

[75]

Y. Bo, H.Y. Yang, Y. Hu, et al. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta, 2011, 56(6): 2676−2681. https://doi.org/10.1016/j.electacta.2010.12.034

[76]

H. Chang, Y. Yuan, N. Shi, et al. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Analytical Chemistry, 2007, 79(13): 5111−5115. https://doi.org/10.1021/ac070639m

[77]

N. Yang, H. Uetsuka, E. Osawa, et al. Vertically aligned diamond nanowires for DNA sensing. Angewandte Chemie International Edition, 2008, 47(28): 5183−5185. https://doi.org/10.1002/anie.200801706

[78]

J.F. Li, E.C. Lee. Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor. Sensors and Actuators B:Chemical, 2017, 239: 652−659. https://doi.org/10.1016/j.snb.2016.08.068

[79]

F. Yan, M. Zhang, J.H. Li. Solution-gated graphene transistors for chemical and biological sensors. Advanced Healthcare Materials, 2014, 3(3): 313−331. https://doi.org/10.1002/adhm.201300221

[80]
Z.-L. Lei, B. Guo, 2D material-based optical biosensor: Status and prospect. Advanced Science, 2022, 9(4): e2102924.
[81]

M. Mohammadniaei, A. Koyappayil, Y. Sun, et al. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosensors and Bioelectronics, 2020, 159: 112208. https://doi.org/10.1016/j.bios.2020.112208

[82]

Q.Q. Wu, Z.H. Li, Q.W. Liang, et al. Ultrasensitive electrochemical biosensor for microRNA-377 detection based on MXene-Au nanocomposite and G-quadruplex nano-amplification strategy. Electrochimica Acta, 2022, 428: 140945. https://doi.org/10.1016/j.electacta.2022.140945

[83]

K.S. Bhat, S. Byun, A. Alam, et al. A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti3C2 MXene-based electrochemical sensor. Talanta, 2022, 244: 123421. https://doi.org/10.1016/j.talanta.2022.123421

[84]

J.Y. Lu, M.H. Wang, Y.W. Han, et al. Functionalization of covalent organic frameworks with DNA via covalent modification and the application to exosomes detection. Analytical Chemistry, 2022, 94(12): 5055−5061. https://doi.org/10.1021/acs.analchem.1c05222

[85]

R. Freund, O. Zaremba, G. Arnauts, et al. The current status of MOF and COF applications. Angewandte Chemie International Edition, 2021, 60(45): 23975−24001. https://doi.org/10.1002/anie.202106259

[86]

H. Li, B.B. Kou, Y.L. Yuan, et al. Porous Fe3O4@COF-Immobilized gold nanoparticles with excellent catalytic performance for sensitive electrochemical detection of ATP. Biosensors and Bioelectronics, 2022, 197: 113758. https://doi.org/10.1016/j.bios.2021.113758

[87]

M. Chen, Y.Y. Wang, H.L. Su, et al. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sensors and Actuators B:Chemical, 2018, 255: 2910−2918. https://doi.org/10.1016/j.snb.2017.09.111

[88]

X. Wang, G. Shu, C. Gao, et al. Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy. Analytical Biochemistry, 2014, 466: 51−58. https://doi.org/10.1016/j.ab.2014.08.023

[89]

A.K. Mattox, C. Bettegowda, S. Zhou, et al. Applications of liquid biopsies for cancer. Science Translational Medicine, 2019, 11(507): eaay1984. https://doi.org/10.1126/scitranslmed.aay1984

[90]

D.P. Kalogianni. Nanotechnology in emerging liquid biopsy applications. Nano Convergence, 2021, 8(1): 13. https://doi.org/10.1186/s40580-021-00263-w

[91]

R. Han, Y. Li, M. Chen, et al. Antifouling electrochemical biosensor based on the designed functional peptide and the electrodeposited conducting polymer for CTC analysis in human blood. Analytical Chemistry, 2022, 94(4): 2204−2211. https://doi.org/10.1021/acs.analchem.1c04787

[92]

J.C.M. Wan, C. Massie, J. Garcia-Corbacho, et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nature Reviews Cancer, 2017, 17(4): 223−238. https://doi.org/10.1038/nrc.2017.7

[93]

Y. Peng, B. Lu, Y. Deng, et al. A dual-recognition-controlled electrochemical biosensor for accurate and sensitive detection of specific circulating tumor cells. Biosensors and Bioelectronics, 2022, 201: 113973. https://doi.org/10.1016/j.bios.2022.113973

[94]

C. Wang, Y. Xu, X. Zhao, et al. A double-tetrahedral DNA framework based electrochemical biosensor for ultrasensitive detection and release of circulating tumor cells. Analyst, 2021, 146(21): 6474−6481. https://doi.org/10.1039/D1AN01470F

[95]

J. Liu, Z. Geng, Z. Fan, et al. Point-of-care testing based on smartphone: The current state-of-the-art (2017-2018). Biosensors and Bioelectronics, 2019, 132: 17−37. https://doi.org/10.1016/j.bios.2019.01.068

[96]

Y.Y. Wang, J.H. Zhou, J.H. Li. Construction of plasmonic nano-biosensor-based devices for point-of-care testing. Small Methods, 2017, 1(11): 1700197. https://doi.org/10.1002/smtd.201700197

[97]
L. Syedmoradi, M.L. Norton, K. Omidfar, Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta, 2021, 225: 122002.
[98]

S. Suan Ng, H. Ling Lee, P. Bothi Raja, et al. Recent advances in nanomaterial-based optical biosensors as potential point-of-care testing (PoCT) probes in carcinoembryonic antigen detection. Chemistry – An Asian Journal, 2022, 17(14): e202200287. https://doi.org/10.1002/asia.202200287

[99]

Y.J. Gao, D.T. Nguyen, T. Yeo, et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Science Advances, 2021, 7(21): eabg9614. https://doi.org/10.1126/sciadv.abg9614

[100]

C. Zhu, G. Yang, H. Li, et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical Chemistry, 2015, 87(1): 230−249. https://doi.org/10.1021/ac5039863

[101]

J. Zhang, L.L. Wang, M.F. Hou, et al. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. Biosensors and Bioelectronics, 2018, 102: 33−40. https://doi.org/10.1016/j.bios.2017.10.050

[102]

P. Miao, Y. Tang. Dumbbell hybridization chain reaction based electrochemical biosensor for ultrasensitive detection of exosomal miRNA. Analytical Chemistry, 2020, 92(17): 12026−12032. https://doi.org/10.1021/acs.analchem.0c02654

[103]

R. Weissleder, H. Lee, J. Ko, et al. COVID-19 diagnostics in context. Science Translational Medicine, 2020, 12(546): eabc1931. https://doi.org/10.1126/scitranslmed.abc1931

[104]

A.S. Peinetti, R.J. Lake, W. Cong, et al. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances, 2021, 7(39): eabh2848. https://doi.org/10.1126/sciadv.abh2848

[105]

L. Zhou, A.R. Chandrasekaran, J.A. Punnoose, et al. Programmable low-cost DNA-based platform for viral RNA detection. Science Advances, 2020, 6(39): eabc6246. https://doi.org/10.1126/sciadv.abc6246

[106]

J. Kim, A.S. Campbell, B.E. de Ávila, et al. Wearable biosensors for healthcare monitoring. Nature Biotechnology, 2019, 37(4): 389−406. https://doi.org/10.1038/s41587-019-0045-y

[107]

B. Yang, X.E. Fang, J.L. Kong. Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Advanced Functional Materials, 2020, 30(24): 2000591. https://doi.org/10.1002/adfm.202000591

[108]

J. Das, S. Gomis, J.B. Chen, et al. Reagentless biomolecular analysis using a molecular pendulum. Nature Chemistry, 2021, 13(5): 428−434. https://doi.org/10.1038/s41557-021-00644-y

[109]

Q. Feng, M. Wang, L. Qin, et al. Dual-signal readout of DNA methylation status based on the assembly of a supersandwich electrochemical biosensor without enzymatic reaction. ACS Sensors, 2019, 4(10): 2615−2622. https://doi.org/10.1021/acssensors.9b00720

[110]

X. Chen, J. Huang, S. Zhang, et al. Electrochemical biosensor for DNA methylation detection through hybridization chain-amplified reaction coupled with a tetrahedral DNA nanostructure. ACS Applied Materials &Interfaces, 2019, 11(4): 3745−3752. https://doi.org/10.1021/acsami.8b20144

[111]

Y.F. Fu, J. Li, D.C. Niu, et al. Synergistic signal amplification of a 3D Dual-Core DNA nanomachine and PCNs@AuPdCe hybrid nanozymes for ultrasensitive electrochemical detection of Cell-free DNA. Chemical Engineering Journal, 2023, 475: 146323. https://doi.org/10.1016/j.cej.2023.146323

[112]

L. Jia, Q. Hu, T. Zhang, et al. Engineering biomimetic biosensor using dual-targeting multivalent aptamer regulated 3D DNA walker enables high-performance detection of heterogeneous circulating tumor cells. Small, 2023, 19(38): e2302542. https://doi.org/10.1002/smll.202302542

[113]

N. Ma, J. Liu, L. Li, et al. Hemoglobin-catalyzed atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Biosensors and Bioelectronics, 2022, 213: 114485. https://doi.org/10.1016/j.bios.2022.114485

[114]

Y. Xu, C. Wang, G. Liu, et al. Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection. Biosensors and Bioelectronics, 2022, 217: 114671. https://doi.org/10.1016/j.bios.2022.114671

[115]

L.Y. Kong, S.Z. Lv, Z.J. Qiao, et al. Metal-organic framework nanoreactor-based electrochemical biosensor coupled with three-dimensional DNA walker for label-free detection of microRNA. Biosensors and Bioelectronics, 2022, 207: 114188. https://doi.org/10.1016/j.bios.2022.114188

[116]

D. Chen, N. Chen, F.N. Liu, et al. Flexible point-of-care electrodes for ultrasensitive detection of bladder tumor-relevant miRNA in urine. Analytical Chemistry, 2023, 95(3): 1847−1855. https://doi.org/10.1021/acs.analchem.2c03156

[117]

W. Ling, G. Liew, Y. Li, et al. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks. Advanced Materials, 2018, 30(23): e1800917. https://doi.org/10.1002/adma.201800917

[118]

M. Gray, J. Meehan, C. Ward, et al. Implantable biosensors and their contribution to the future of precision medicine. The Veterinary Journal, 2018, 239: 21−29. https://doi.org/10.1016/j.tvjl.2018.07.011

[119]

M. Li, J. Liu, H. Zhao, et al. DNA framework-programmed micronano hierarchy sensor interface for metabolite analysis in whole blood. ACS Applied Bio Materials, 2020, 3(1): 53−58. https://doi.org/10.1021/acsabm.9b00841

[120]

D. Chan, J.C. Chien, E. Axpe, et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Advanced Materials, 2022, 34(24): e2109764. https://doi.org/10.1002/adma.202109764

[121]

P. Gulati, P. Mishra, M. Khanuja, et al. Nano-moles detection of tumor specific biomarker DNA for colorectal cancer detection using vertically aligned multi-wall carbon nanotubes based flexible electrodes. Process Biochemistry, 2020, 90: 184−192. https://doi.org/10.1016/j.procbio.2019.11.021

[122]

J. Park, Y. Lee, T.Y. Kim, et al. Functional bioelectronic materials for long-term biocompatibility and functionality. ACS Applied Electronic Materials, 2022, 4(4): 1449−1468. https://doi.org/10.1021/acsaelm.1c01212

[123]

J. Wu, H.L. Wang, A.N. Zhu, et al. Adsorption kinetics of single-stranded DNA on functional silica surfaces and its influence factors: An evanescent-wave biosensor study. ACS Omega, 2018, 3(5): 5605−5614. https://doi.org/10.1021/acsomega.7b02063

[124]

S. Huo, H. Li, A.J. Boersma, et al. DNA nanotechnology enters cell membranes. Advanced Science, 2019, 6(10): 1900043. https://doi.org/10.1002/advs.201900043

[125]

Z.A. Xu, X. Chen, S.J. Dong. Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends in Analytical Chemistry, 2006, 25(9): 899−908. https://doi.org/10.1016/j.trac.2006.04.008

[126]

J. El-Maiss, M. Cuccarese, C. Maerten, et al. Mussel-inspired electro-cross-linking of enzymes for the development of biosensors. ACS Applied Materials &Interfaces, 2018, 10(22): 18574−18584. https://doi.org/10.1021/acsami.8b04764

[127]

Q. Zhai, W. Cheng. Soft and stretchable electrochemical biosensors. Materials Today Nano, 2019, 7: 100041. https://doi.org/10.1016/j.mtnano.2019.100041

[128]

S. Menon, M.R. Mathew, S. Sam, et al. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of Electroanalytical Chemistry, 2020, 878: 114596. https://doi.org/10.1016/j.jelechem.2020.114596

[129]
J. Chen, X. Ding, D. Zhang. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta, 2024, 266(pt 1): 124933.
[130]

E.A.H. Hall, S. Chen, J. Chun, et al. A molecular biology approach to protein coupling at a biosensor interface. TrAC Trends in Analytical Chemistry, 2016, 79: 247−256. https://doi.org/10.1016/j.trac.2016.01.024

[131]

G. Luongo, P. Campagnolo, J.E. Perez, et al. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer. ACS Applied Materials &Interfaces, 2017, 9(46): 40059−40069. https://doi.org/10.1021/acsami.7b12290

[132]

S. Fa, Y. Zhao. Peptide-binding nanoparticle materials with tailored recognition sites for basic peptides. Chemistry of Materials, 2017, 29(21): 9284−9291. https://doi.org/10.1021/acs.chemmater.7b03253

[133]

L. Zhang, Y.B. Yang, J. Tan, et al. Chemically modified nucleic acid biopolymers used in biosensing. Materials Chemistry Frontiers, 2020, 4(5): 1315−1327. https://doi.org/10.1039/D0QM00026D

[134]

V.C. Diculescu, A.M. Chiorcea-Paquim, A.M. Oliveira-Brett. Applications of a DNA-electrochemical biosensor. TrAC Trends in Analytical Chemistry, 2016, 79: 23−36. https://doi.org/10.1016/j.trac.2016.01.019

Nano Biomedicine and Engineering
Pages 309-330
Cite this article:
Yu Y, Chen D, Yang Y, et al. Recent Progress in Electrochemical Biosensors Based on DNA-functionalized Nanomaterials. Nano Biomedicine and Engineering, 2024, 16(3): 309-330. https://doi.org/10.26599/NBE.2024.9290071

1715

Views

402

Downloads

1

Crossref

1

Scopus

Altmetrics

Received: 07 October 2023
Revised: 30 November 2023
Accepted: 08 December 2023
Published: 19 April 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return