AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Allicin-capped Silver Nanoparticles (AgNPs): Synthesis, Profiling, Antioxidant, and Biomedical Properties

Sarwar Allah Ditta1( )Atif Yaqub1Rehan Ullah1Fouzia Tanvir2Shaista Ali3
Department of Zoology, Government College University, Lahore 54000, Pakistan
Department of Zoology, University of Okara, Okara 56300, Pakistan
Department of Chemistry, Government College University, Lahore 54000, Pakistan
Show Author Information

Graphical Abstract

Abstract

Allicin is a major component in garlic extract and it gives garlic its characteristic taste and odor. In this study, allicin was extracted from the garlic and used in the synthesis of silver nanoparticles (AgNPs). Allicin exhibited a broader ultraviolet (UV) peak at 240 nm, while high-performance liquid chromatography (HPLC) yielded one prominent peak corresponding to allicin. The allicin-mediated AgNPs (Al-AgNPs), and chemically synthesized AgNPs (C-AgNPs) were characterized by ultraviolet–visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), particle size analyzer (PSA), zeta potential, and transmission electron microscopy (TEM) analyses. The Al-AgNPs demonstrated good 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (in vitro), and antioxidant potential in albino mice (in vivo). The reduced glutathione (GSH) and catalase (CAT) activity were significantly elevated (p < 0.05) and the activity of superoxide dismutase (SOD) was depleted (p < 0.05) in some groups. The histopathological analysis and all other findings revealed the safer biological nature of Al-AgNPs in comparison to the C-AgNPs. It is concluded that Al-AgNPs are low toxic and safe for oxidative stress-related biomedical applications.

References

[1]

G.L. Wang, H. Uludag. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opinion on Drug Delivery, 2008, 5(5): 499−515. https://doi.org/10.1517/17425247.5.5.499

[2]

O.C. Farokhzad, R. Langer. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16−20. https://doi.org/10.1021/nn900002m

[3]

S.M. Moghimi, A.C. Hunter, J.C. Murray. Nanomedicine: Current status and future prospects. The FASEB Journal, 2005, 19(3): 311−330. https://doi.org/10.1096/fj.04-2747rev

[4]

N.L. Rosi, C.A. Mirkin. Nanostructures in biodiagnostics. Chemical Reviews, 2005, 105(4): 1547−1562. https://doi.org/10.1021/cr030067f

[5]

A.K.R. Lytton-Jean, R. Langer, D.G. Anderson. Five years of siRNA delivery: Spotlight on gold nanoparticles. Small, 2011, 7(14): 1932−1937. https://doi.org/10.1002/smll.201100761

[6]

M.D. Massich, D.A. Giljohann, D.S. Seferos, et al. Regulating immune response using polyvalent nucleic acid–gold nanoparticle conjugates. Molecular Pharmaceutics, 2009, 6(6): 1934−1940. https://doi.org/10.1021/mp900172m

[7]
G. Tyagi, S. Pradhan, T. Srivastava, et al. Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential. Biochimica et Biophysica Acta (BBA) - General Subjects, 2014, 1840(1): 350–356.
[8]

S.B. Bhatwalkar, R. Mondal, S.B.N. Krishna, et al. Antibacterial properties of organosulfur compounds of garlic (allium sativum). Frontiers in Microbiology, 2021, 12: 613077. https://doi.org/10.3389/fmicb.2021.613077

[9]
W.H. Talib, S. Atawneh, A.N. Shakhatreh, et al. &#65279;Anticancer potential of garlic bioactive constituents: Allicin, Z-ajoene, and organosulfur compounds. Pharmacia, 2024, 71: 1–23.
[10]

H. Amagase, B.L. Petesch, H. Matsuura, et al. Intake of garlic and its bioactive components. The Journal of Nutrition, 2001, 131(3): 955S−962S. https://doi.org/10.1093/jn/131.3.955s

[11]
B.R. Kuber, I. Theja, G. Tejaswi, et al. A Text Book on Nutraceuticals and their determination by Modern Analytical Techniques. INTERATED PUBLICATIONS, 2023: 65–71.
[12]
S.PJ. Chen, B.S. Pan. Food flavors. In: Chemical and Functional Properties of Food Components. Boca Raton: CRC Press, 2023: 363–400.
[13]

M.S. Rahman. Allicin and other functional active components in garlic: Health benefits and bioavailability. International Journal of Food Properties, 2007, 10(2): 245−268. https://doi.org/10.1080/10942910601113327

[14]

M.S. Nadeem, I. Kazmi, I. Ullah, et al. Allicin, an antioxidant and neuroprotective agent, ameliorates cognitive impairment. Antioxidants, 2021, 11(1): 87. https://doi.org/10.3390/antiox11010087

[15]

H. Harmita, H. Suryadi, M. Syarif, et al. Gas chromatography analysis of diallyl disulphide and diallyl trisulphide and antioxidant activity in black garlic. International Journal of Pharmaceutical Investigation, 2020, 10(1): 17−23. https://doi.org/10.5530/ijpi.2020.1.4

[16]
A.M.A. Marie, N. Wijayanti. The antioxidant properties of black garlic aqueous extract in vero cell line. In: Proceeding International Conference on Science and Engineering, 2020, 3: 85–89.
[17]

S. Sut, F. Maggi, S. Bruno, et al. Hairy garlic (Allium subhirsutum) from Sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules, 2020, 25(12): 2837. https://doi.org/10.3390/molecules25122837

[18]

S. Oshiba, H. Sawai, T. Tamada, et al. Inhibitory effect of orally administered inclusion complex of garlic oil on platelet aggregation in man. Igaku no Ayuma, 1990, 155(3): 199−200.

[19]

B. Salehi, P. Zucca, I.E. Orhan, et al. Allicin and health: A comprehensive review. Trends in Food Science &Technology, 2019, 86: 502−516. https://doi.org/10.1016/j.jpgs.2019.03.003

[20]

C.R. Schultz, M.C.H. Gruhlke, A.J. Slusarenko, et al. Allicin, a potent new ornithine decarboxylase inhibitor in neuroblastoma cells. Journal of Natural Products, 2020, 83(8): 2518−2527. https://doi.org/10.1021/acs.jnatprod.0c00613

[21]

M.C.H. Gruhlke, A.J. Slusarenko. The biology of reactive sulfur species (RSS). Plant Physiology and Biochemistry, 2012, 59: 98−107. https://doi.org/10.1016/j.plaphy.2012.03.016

[22]

K. Ried, C. Toben, P. Fakler. Effect of garlic on serum lipids: An updated meta-analysis. Nutrition Reviews, 2013, 71(5): 282−299. https://doi.org/10.1111/nure.12012

[23]

S. Panyod, W.K. Wu, P.C. Chen, et al. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms and Microbiomes, 2022, 8: 4. https://doi.org/10.1038/s41522-022-00266-3

[24]

J.Y.Y. Chan, A.C.Y. Yuen, R.Y.K. Chan, et al. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytotherapy Research, 2013, 27(5): 637−646. https://doi.org/10.1002/ptr.4796

[25]

E.M.A. García-Trejo, A.S. Arellano-Buendía, R. Argüello-García, et al. Effects of allicin on hypertension and cardiac function in chronic kidney disease. Oxidative Medicine and Cellular Longevity, 2016, 2016: 3850402. https://doi.org/10.1155/2016/3850402

[26]

T.W. Cui, W.Y. Liu, S.K. Chen, et al. Antihypertensive effects of allicin on spontaneously hypertensive rats via vasorelaxation and hydrogen sulfide mechanisms. Biomedicine &Pharmacotherapy, 2020, 128: 110240. https://doi.org/10.1016/j.biopha.2020.110240

[27]

S. Melino, S. Leo, V.T. Papajani. Natural hydrogen sulfide donors from allium sp. as a nutraceutical approach in type 2 diabetes prevention and therapy. Nutrients, 2019, 11(7): 1581. https://doi.org/10.3390/nu11071581

[28]

G. Maitisha, M. Aimaiti, Z.C. An, et al. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Molecular Biology Reports, 2021, 48(11): 7261−7272. https://doi.org/10.1007/s11033-021-06722-1

[29]

A. Alamir, S. Patil. Allicin could potentially alleviate oral cancer pain by inhibiting “pain mediators” TNF-alpha, IL-8, and endothelin. Current Issues in Molecular Biology, 2021, 43(1): 187−196. https://doi.org/10.3390/cimb43010016

[30]

A.N. Guterres, J. Villanueva. Targeting telomerase for cancer therapy. Oncogene, 2020, 39(36): 5811−5824. https://doi.org/10.1038/s41388-020-01405-w

[31]

I. Toygar, A. Tureyen, D. Demir, et al. Effect of allicin on wound healing: An experimental diabetes model. Journal of Wound Care, 2020, 29(7): 388−392. https://doi.org/10.12968/jowc.2020.29.7.388

[32]

P.R. Cai, Q.H. Zhu, Q.Y. Cao, et al. Quercetin and allicin can alleviate the hepatotoxicity of lead (Pb) through the PI3K signaling pathway. Journal of Agricultural and Food Chemistry, 2021, 69(32): 9451−9460. https://doi.org/10.1021/acs.jafc.1c03794

[33]

B. Nan, C.Y. Yang, L. Li, et al. Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver. Food and Chemical Toxicology, 2021, 148: 111937. https://doi.org/10.1016/j.fct.2020.111937

[34]

H.S. Saleh, S. Enaas. Modulation male fertility in diabetic rats by allicin administration. Journal of Education for Pure Science, 2017, 7: 96−110.

[35]

H. Musavi, M. Tabnak, F. Alaei Sheini, et al. Effect of garlic (Allium sativum) on male fertility: A systematic review. Journal of Herbmed Pharmacology, 2018, 7(4): 306−312. https://doi.org/10.15171/jhp.2018.46

[36]

M. Osman, A. Adnan, N.S. Bakar, et al. Allicin has significant effect on autoimmune anti-islet cell antibodies in type 1 diabetic rats. Polish Journal of Pathology, 2012, 4: 248−254. https://doi.org/10.5114/pjp.2012.32772

[37]

G. Von White II, P. Kerscher, R.M. Brown, et al. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. Journal of Nanomaterials, 2012, 2012: 55. https://doi.org/10.1155/2012/730746

[38]

S.M. Hoseini Alfatemi, M. Sharifi Rad, M. Iriti, et al. Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant staphylococcus aureus spp. Annals of Medical and Health Sciences Research, 2014, 4(6): 863. https://doi.org/10.4103/2141-9248.144883

[39]

A.A. El-Refai, G.A. Ghoniem, A.Y. El-Khateeb, et al. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry, 2018, 8(1): 71−81. https://doi.org/10.1007/s40097-018-0255-8

[40]

S. Vijayakumar, B. Malaikozhundan, K. Saravanakumar, et al. Garlic clove extract assisted silver nanoparticle–Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry and Photobiology B:Biology, 2019, 198: 111558. https://doi.org/10.1016/j.jphotobiol.2019.111558

[41]

M. Reda, A. Ashames, Z. Edis, et al. Green synthesis of potent antimicrobial silver nanoparticles using different plant extracts and their mixtures. Processes, 2019, 7(8): 510. https://doi.org/10.3390/pr7080510

[42]

A. Yaqub, S.A. Ditta, K.M. Anjum, et al. Comparative analysis of toxicity induced by different synthetic silver nanoparticles in albino mice. BioNanoScience, 2019, 9(3): 553−563. https://doi.org/10.1007/s12668-019-00642-y

[43]

F.F. Li, Q. Li, S.G. Wu, et al. Salting-out extraction of allicin from garlic (Allium sativum L.) based on ethanol/ammonium sulfate in laboratory and pilot scale. Food Chemistry, 2017, 217: 91−97. https://doi.org/10.1016/j.foodchem.2016.08.092

[44]

A.K. Keshari, R. Srivastava, P. Singh, et al. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 2020, 11(1): 37−44. https://doi.org/10.1016/j.jaim.2017.11.003

[45]

S. Marklund, G. Marklund. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 1974, 47(3): 469−474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

[46]

M. Javed, N. Usmani, I. Ahmad, et al. Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant. Environmental Monitoring and Assessment, 2014, 187(1): 4179. https://doi.org/10.1007/s10661-014-4179-6

[47]

S. Roy, S. Bhattacharya. Arsenic-induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicology and Environmental Safety, 2006, 65(2): 218−229. https://doi.org/10.1016/j.ecoenv.2005.07.005

[48]
. Y.V. Kazakevich, R. Lobrutto. HPLC for pharmaceutical scientists. John Wiley &#38; Sons, 2007.
[49]

M. Arzanlou, S. Bohlooli, M. Ranjbar Omid. Purification of allicin from garlic extract using semi-preparative high performance liquid chromatography. Jundishapur Journal of Natural Pharmaceutical Products, 2015, 10(2): e17424. https://doi.org/10.17795/jjnpp-17424

[50]

A.M. Farías-Campomanes, C. Horita, M. Pollonio, et al. Allicin-rich extract obtained from garlic by pressurized liquid extraction: Quantitative determination of allicin in garlic samples. Food and Public Health, 2014, 4(6): 272−278.

[51]

W. Bat-Chen, T. Golan, I. Peri, et al. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutrition and Cancer, 2010, 62(7): 947−957. https://doi.org/10.1080/01635581.2010.509837

[52]
J.Y. Lee, K.H. Kyung, Purification of S-Alk(en)yl alka/enethiosulfinates of garlic (Allium sativum L.) by using recycling preparative HPLC. Food Science and Biotechnology, 2011, 20(4): 1167–1170.
[53]

S. Bhattacharya. Application of ultrasonication and PEGylation as green extraction technology for yield intensification of diallyl thiosulfinate (allicin). Process Biochemistry, 2023, 130: 300−309. https://doi.org/10.1016/j.procbio.2023.04.015

[54]

X.L. Liu, T.H. Mu, H.N. Sun, et al. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chemistry, 2013, 141(3): 3034−3041. https://doi.org/10.1016/j.foodchem.2013.05.119

[55]
Y.S. Dong, B.F. Pang, F. Yu, et al. Extraction and purification of IgG by hydrophilic organic solvent salting-out extraction. Journal of Chromatography B, 2016, 1012–1013: 137–143.
[56]

S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27): 12871−12934. https://doi.org/10.1039/c8nr02278j

[57]

S.A. Ditta, A. Yaqub, R. Ullah, et al. Evaluation of amino acids capped silver nanoconjugates for the altered oxidative stress and antioxidant potential in albino mice. Journal of Materials Research, 2021, 36(21): 4344−4359. https://doi.org/10.1557/s43578-021-00427-8

[58]

L. Lawson, S. Wood, B. Hughes. HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Planta Medica, 1991, 57(3): 263−270. https://doi.org/10.1055/s-2006-960087

[59]

P.N.V.K. Pallela, S. Ummey, L.K. Ruddaraju, et al. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 2018, 124: 63−69. https://doi.org/10.1016/j.micpath.2018.08.026

[60]

S. Bawazeer, A. Rauf, S.U. Ali Shah, et al. Green synthesis of silver nanoparticles usingTropaeolum majus: Phytochemical screening and antibacterial studies. Green Processing and Synthesis, 2021, 10(1): 85−94. https://doi.org/10.1515/gps-2021-0003

[61]

R.H. Ahmed, D.E. Mustafa. Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 2020, 10(1): 1−14. https://doi.org/10.1007/s40089-019-00291-9

[62]

A.A. Numan, M. Ahmed, M.S.A. Galil, et al. Bio-fabrication of silver nanoparticles using Catha edulis extract: Procedure optimization and antimicrobial efficacy encountering antibiotic-resistant pathogens. Advances in Nanoparticles, 2022, 11(2): 31−54. https://doi.org/10.4236/anp.2022.112004

[63]

A.I. Felimban, N.S. Alharbi, N.S. Alsubhi. Optimization, characterization, and anticancer potential of silver nanoparticles biosynthesized using olea europaea. International Journal of Biomaterials, 2022, 2022: 6859637. https://doi.org/10.1155/2022/6859637

[64]

E. Fattorusso, V. Lanzotti, O. Taglialatela-Scafati, et al. The flavonoids of leek, allium porrum. Phytochemistry, 2001, 57(4): 565−569. https://doi.org/10.1016/s0031-9422(01)00039-5

[65]

Y. Gavamukulya, E.N. Maina, A.M. Meroka, et al. Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of annona muricata. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(4): 1231−1242. https://doi.org/10.1007/s10904-019-01262-5

[66]

M. Vignesh, P.V. Moorthi. An overview of naturally synthesized metallic nanoparticles. Journal of Applied Pharmaceutical Science, 2017, 7(6): 229−237. https://doi.org/10.7324/japs.2017.70634

[67]

M.Z.H. Khan, F.K. Tarek, M. Nuzat, et al. Rapid biological synthesis of silver nanoparticles from ocimum sanctum and their characterization. Journal of Nanoscience, 2017, 2017: 1693416. https://doi.org/10.1155/2017/1693416

[68]

N. Gupta, C. Gupta, S. Sharma, et al. Comparative study of antibacterial activity of standard antibiotic with silver nanoparticles synthesized using ocimum tenuiflorum and garcinia mangostana leaves. Chemical Biology Letters, 2015, 2(2): 41−44.

[69]

N. Ahmad, S. Sharma, M.K. Alam, et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B:Biointerfaces, 2010, 81(1): 81−86. https://doi.org/10.1016/j.colsurfb.2010.06.029

[70]

A. Dhaka, S. Chand Mali, S. Sharma, et al. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 2023, 6: 101108. https://doi.org/10.1016/j.rechem.2023.101108

[71]

M. Ohiduzzaman, M.N.I. Khan, K.A. Khan, et al. Green synthesis of silver nanoparticles by using Allium sativum extract and evaluation of their electrical activities in bio-electrochemical cell. Nanotechnology, 2024, 35(9): 095707. https://doi.org/10.1088/1361-6528/ad10e4

[72]

Z. Saeed, M. Pervaiz, A. Ejaz, et al. Garlic and ginger extracts mediated green synthesis of silver and gold nanoparticles: A review on recent advancements and prospective applications. Biocatalysis and Agricultural Biotechnology, 2023, 53: 102868. https://doi.org/10.1016/j.bcab.2023.102868

[73]

N. Muhammad, I. Nisa, S.F. Gilani, et al. Medicinal plants-fabricated AgNPs and their role as an antibacterial agent against drug-resistant uro-pathogens. Nano Biomedicine and Engineering, 2024, 16(1): 110−118. https://doi.org/10.26599/nbe.2024.9290045

[74]

V.U. Maheshwari Nallal, K. Prabha, I. VethaPotheher, et al. Sunlight-driven rapid and facile synthesis of Silver nanoparticles using Allium ampeloprasum extract with enhanced antioxidant and antifungal activity. Saudi Journal of Biological Sciences, 2021, 28(7): 3660−3668. https://doi.org/10.1016/j.sjbs.2021.05.001

[75]

S. Subbanna, G. Ts, K.M. Basalingappa. Biogenic nanoparticles from allium sativum and its bioactives applications. European Journal of Translational and Clinical Medicine, 2020, 7(8): 212−232.

[76]

M.F. Islam, S. Islam, M.A.S. Miah, et al. Green synthesis of zinc oxide nano particles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities. Heliyon, 2024, 10(3): e25430. https://doi.org/10.1016/j.heliyon.2024.e25430

[77]

Y. Zhou, W.S. Lin, J.L. Huang, et al. Biosynthesis of gold nanoparticles by foliar broths: Roles of biocompounds and other attributes of the extracts. Nanoscale Research Letters, 2010, 5(8): 1351. https://doi.org/10.1007/s11671-010-9652-8

[78]

J. Stetefeld, S.A. McKenna, T.R. Patel. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 2016, 8(4): 409−427. https://doi.org/10.1007/s12551-016-0218-6

[79]
A. Kumar, C.K. Dixit. Methods for characterization of nanoparticles. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Amsterdam: Elsevier, 2017: 43–58.
[80]

Y. Teles, M. Souza, M. Souza. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules, 2018, 23(2): 480. https://doi.org/10.3390/molecules23020480

[81]
A. Madni, F. Jameel, S.Z. Bajwa, et al. Toxicity, biological fate, and bioavailability of nanoemulsion formulations. In: Bio-Based Nanoemulsions for Agri-Food Applications. Amsterdam: Elsevier, 2022: 91–104.
[82]

D. Chukwu Onu, A. Kamoru Babayemi, T. Chinedu Egbosiuba, et al. Isotherm, kinetics, thermodynamics, recyclability and mechanism of ultrasonic assisted adsorption of methylene blue and lead (II) ions using green synthesized nickel oxide nanoparticles. Environmental Nanotechnology,Monitoring &Management, 2023, 20: 100818. https://doi.org/10.1016/j.enmm.2023.100818

[83]

K. Swarnalatha, K. Rajkumar, P. Karthiga, et al. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technologies, 2017, 3(3): 303−308. https://doi.org/10.18799/24056529/2017/3/131

[84]

J. Songsungkan, S. Chanthai. Determination of synergic antioxidant activity of the methanol/ethanol extract of allicin in the presence of total phenolics obtained from the garlic capsule compared with fresh and baked garlic clove. International Food Research Journal, 2014, 21(6): 2377.

[85]

Y.X. Liu, R. Song, X.H. Zhang, et al. Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. International Journal of Biological Macromolecules, 2020, 161: 1405−1413. https://doi.org/10.1016/j.ijbiomac.2020.08.051

[86]
. D. Lahiri, M. Nag, B. Dutta, et al. Synergistic effect of quercetin with allicin from the ethanolic extract of allium cepa as a potent antiquorum sensing and anti-biofilm agent against oral biofilm. In: Advances in Bioprocess Engineering and Technology. Springer, 2021: 69–81.
[87]

A. Biancolillo, F. Marini, A.A. D’Archivio. Geographical discrimination of red garlic (Allium sativum L.) using fast and non-invasive Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy combined with chemometrics. Journal of Food Composition and Analysis, 2020, 86: 103351. https://doi.org/10.1016/j.jfca.2019.103351

[88]
G. Baysal. In vitro cytotoxicity analysis and synthesis of biocidal allicin/mt/mma/peg/poss nanocomposites for the food packaging. G&#305;da, 2020, 45(3): 600–611.
[89]

A. Haider, M. Ijaz, S. Ali, et al. Green synthesized phytochemically (zingiber officinale and allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Research Letters, 2020, 15(1): 50. https://doi.org/10.1186/s11671-020-3283-5

[90]

A. Haider, M. Ijaz, M. Imran, et al. Enhanced bactericidal action and dye degradation of spicy roots’ extract-incorporated fine-tuned metal oxide nanoparticles. Applied Nanoscience, 2020, 10(4): 1095−1104. https://doi.org/10.1007/s13204-019-01188-x

[91]
S. Salari, S.E. Bahabadi, A. Samzadeh-Kermani, et al. In-vitro evaluation of antioxidant and antibacterial potential of GreenSynthesized silver nanoparticles using prosopis farcta fruit extract. Iranian Journal of Pharmaceutical Research, 2019,18(1): 430.
[92]

Y.K. Mohanta, S.K. Panda, R. Jayabalan, et al. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences, 2017, 4: 14. https://doi.org/10.3389/fmolb.2017.00014

[93]

A. Iyaswamy, S. Rathinasamy, W. Dapkupar. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain. The Journal of Biomedical Research, 2015, 29(5): 390. https://doi.org/10.7555/jbr.28.20120118

[94]

U. Rani, O. Jamakala. Amelioration effect of zinc and iron supplementation on selected oxidative stress enzymes in liver and kidney of cadmium-treated male albino rat. Toxicology International, 2015, 22(1): 1. https://doi.org/10.4103/0971-6580.172289

[95]

M. Ajdary, M. Negahdary, R. Chelongar, et al. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Advanced Biomedical Research, 2015, 4(1): 69. https://doi.org/10.4103/2277-9175.153893

[96]

S. Mehrzadi, I. Fatemi, M. Esmaeilizadeh, et al. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomedicine &Pharmacotherapy, 2018, 97: 233−239. https://doi.org/10.1016/j.biopha.2017.10.113

[97]

Y. Wu, Q.F. Zhou. Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry, 2013, 32(1): 165−173. https://doi.org/10.1002/etc.2038

[98]

E. Arya, S. Saha, S.A. Saraf, et al. Effect ofPerilla frutescensFixed oil on experimental esophagitis in albino wistar rats. BioMed Research International, 2013, 2013: 981372. https://doi.org/10.1155/2013/981372

[99]

P. Gopinath, S.K. Gogoi, A. Chattopadhyay, et al. Implications of silver nanoparticle induced cell apoptosis forin vitrogene therapy. Nanotechnology, 2008, 19(7): 075104. https://doi.org/10.1088/0957-4484/19/7/075104

[100]

J.H. Ji, J.H. Jung, S.S. Kim, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in sprague-dawley rats. Inhalation Toxicology, 2007, 19(10): 857−871. https://doi.org/10.1080/08958370701432108

[101]

B.K. Gaiser, T.F. Fernandes, M.A. Jepson, et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environmental Toxicology and Chemistry, 2012, 31(1): 144−154. https://doi.org/10.1002/etc.703

[102]
S. Takenaka, E. Karg, C. Roth, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 2001, 109(suppl 4): 547–551.
[103]

S. Arora, J. Jain, J.M. Rajwade, et al. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 2009, 236(3): 310−318. https://doi.org/10.1016/j.taap.2009.02.020

[104]

R.R.R. Sardari. Toxicological effects of silver nanoparticles in rats. African Journal of Microbiology Research, 2012, 6(27): 5587−5593. https://doi.org/10.5897/ajmr11.1070

[105]

B. Kim, C.S. Park, M. Murayama, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science &Technology, 2010, 44(19): 7509−7514. https://doi.org/10.1021/es101565j

[106]

J.H. Sung, J.H. Ji, J.D. Park, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicological Sciences, 2009, 108(2): 452−461. https://doi.org/10.1093/toxsci/kfn246

Nano Biomedicine and Engineering
Pages 370-385
Cite this article:
Ditta SA, Yaqub A, Ullah R, et al. Allicin-capped Silver Nanoparticles (AgNPs): Synthesis, Profiling, Antioxidant, and Biomedical Properties. Nano Biomedicine and Engineering, 2024, 16(3): 370-385. https://doi.org/10.26599/NBE.2024.9290090

1228

Views

269

Downloads

1

Crossref

1

Scopus

Altmetrics

Received: 09 January 2024
Revised: 16 May 2024
Accepted: 07 June 2024
Published: 09 July 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return