AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (540.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access | Online First

Advances in Nanosuspension Technology: Current Trends and Future Horizons

Nikita P. Mane( )Bhushan R. RaneAshish S. Jain
Department of Pharmaceutics, Shri D. D. Vispute College of Pharmacy & Research Center, Raigad 410206, India
Show Author Information

Graphical Abstract

Abstract

Advancements in contemporary technology have led to the discovery of numerous medications with improved efficacy; however, their limited water solubility restricts their clinical use. Approximately 40% of drugs in development and 60% of synthesized molecules have low water solubility, presenting a major challenge in drug formulation. Generally, low bioavailability is correlated with poor solubility. Nanosuspension offers a potential solution to this challenge. When materials are transformed into nanoscale dimensions, they undergo significant changes in their physical properties. This review describes the various medicinal benefits of nanonization, the industrial production processes currently available, and the different dosage forms created with nanocrystals. An overview of existing nanosuspension products is provided, highlighting their advantages over conventional products and offering an outlook for the future.

References

[1]

B.A. Bhairav, J.K. Bachhav, R.B. Saudagar. Review on solubility enhancement techniques. Asian Journal of Pharmaceutical Research, 2016, 6(3): 175. https://doi.org/10.5958/2231-5691.2016.00025.3

[2]

S.V. Khandbahale. A review-nanosuspension technology in drug delivery system. Asian Journal of Pharmaceutical Research, 2019, 9(2): 130. https://doi.org/10.5958/2231-5691.2019.00021.2

[3]
R. Chakravorty. Nanosuspension as an emerging Nanotechnology and Techniques for its development. Research Journal of Pharmacy and Technology, 2022: 489–493. https://doi.org/10.52711/0974-360x.2022.00079
[4]
A.M. Mendes Cerdeira. Production and stabilization of nanosuspensions of poorly soluble drug substances. Ph.D. Dissertation, Zurich: ETH Zurich, 2012.
[5]

B.P. Sahu, M.K. Das. Nanosuspension for enhancement of oral bioavailability of felodipine. Applied Nanoscience, 2014, 4(2): 189−197. https://doi.org/10.1007/s13204-012-0188-3

[6]

C. Jiraporn, J. Walailak. Nanosuspension technology for drug delivery. Walailak Journal of Science and Technology, 2007, 4: 139−153.

[7]

K. Koteshwara, Reddy, A. Naha, et al. Nanosuspensions: A novel drug delivery approach. International Journal of Research in Ayurveda and Pharmacy, 2011, 2: 162−165.

[8]

Y.T. Duan, A. Dhar, C. Patel, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10: 26777−26791. https://doi.org/10.1039/D0RA03491F

[9]

D.N. Xia, P. Quan, H.Z. Piao, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. European Journal of Pharmaceutical Sciences, 2010, 40(4): 325−334. https://doi.org/10.1016/j.ejps.2010.04.006

[10]

S. Singh, Y. Vaidya, M. Gulati, et al. Nanosuspension: Principles, perspectives and practices. Current Drug Delivery, 2016, 13(8): 1222−1246. https://doi.org/10.2174/1567201813666160101120452

[11]

N. Modh, D. Mehta, P. Parejiya, et al. An overview of recent patents on nanosuspension. Recent Patents on Drug Delivery & Formulation, 2014, 8(2): 144−154. https://doi.org/10.2174/1872211308666140422150819

[12]

P.A. Jadhav, A.V. Yadav. Nanosspension based drug delivery: A key discussion on its present and future perspective. Interntionl Journal of Pharmaceutical Science And Research, 2019, 59(1): 133−139.

[13]

V.B. Patravale, A.A. Date, R.M. Kulkarni. Nanosuspensions: A promising drug delivery strategy. Journal of Pharmacy and Pharmacology, 2010, 56(7): 827−840. https://doi.org/10.1211/0022357023691

[14]

V.A. Kamble, D.M. Jagdale, V.J. Kadam. Nanosuspension a novel drug delivery system. International Journal of Pharma and Bio Sciences, 2010, 1: 352−360.

[15]
M. List, H. Sucker. Pharmaceutical colloidal hydrosols for injection. GB patent. 1988; 2200048, 6 Feb. 1991.
[16]

V.B. Junyaprasert, B. Morakul. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 2015, 10(1): 13−23. https://doi.org/10.1016/j.ajps.2014.08.005

[17]

S.G. Pınar, A.N. Oktay, A.E. Karaküçük, et al. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics, 2023, 15(5): 1520. https://doi.org/10.3390/pharmaceutics15051520

[18]

M. Uner, G. Yener. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2007, 2(3): 289−300.

[19]

L. Sievens-Figueroa, A. Bhakay, J.I. Jerez-Rozo, et al. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications. International Journal of Pharmaceutics, 2012, 423(2): 496−508. https://doi.org/10.1016/j.ijpharm.2011.12.001

[20]

K. Peters, S. Leitzke, J.E. Diederichs, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. Journal of Antimicrobial Chemotherapy, 2000, 45(1): 77−83. https://doi.org/10.1093/jac/45.1.77

[21]

Y.M. Rao, M.P. Kumar, S. Apte. Formulation of nanosuspensions of albendazole for oral administration. Current Nanoscience, 2008, 4: 53−58. https://doi.org/10.2174/157341308783591807

[22]

S. Dhiman, G.S. Thakur. Nanosuspension: A recent approach for nano drug delivery system. International journal of current pharmaceutical research, 2011, 3: 96−101.

[23]

S. Verma, R. Gokhale, D.J. Burgess. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. International Journal of Pharmaceutics, 2009, 380(1−2): 216−222. https://doi.org/10.1016/j.ijpharm.2009.07.005

[24]

S. Reshma, G. Manoj. Nanosuspension: A promising drug delivery system. Pharmacophore, 2012, 3(5): 217−243.

[25]
J. Swarbrick, J.C. Boylan. Encyclopedia of Pharmaceutical Technology, 3rd Ed. CRC Press, 1995.
[26]
J. Swarbrick. Encyclopedia of Pharmaceutical Science and Technology, 4th ed. CRC Press, 2013.
[27]

R. Susarla, L. Sievens-Figueroa, A. Bhakay, et al. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection. International Journal of Pharmaceutics, 2013, 455(1-2): 93−103. https://doi.org/10.1016/j.ijpharm.2013.07.051

[28]
J. Malakar, A. Basu, A. Ghosh. Nanosuspension: A nano-heterogeneous carrier for drug delivery system. International Journal of Pharmaceutical & Biological Archive, 2012, 3.
[29]

L. Gao, G.Y. Liu, X.Q. Wang, et al. Preparation of a chemically stable quercetin formulation using nanosuspension technology. International Journal of Pharmaceutics, 2011, 404(1−2): 231−237. https://doi.org/10.1016/j.ijpharm.2010.11.009

[30]

E. Ojewole, I. Mackraj, P. Naidoo, et al. Exploring the use of novel drug delivery systems for antiretroviral drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70(3): 697−710. https://doi.org/10.1016/j.ejpb.2008.06.020

[31]

R.H. Müller, C.M. Keck. Twenty years of drug nanocrystals: Where are we, and where do we go. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80(1): 1−3. https://doi.org/10.1016/j.ejpb.2011.09.012

[32]

L.B. Wu, J. Zhang, W. Watanabe. Physical and chemical stability of drug nanoparticles. Advanced Drug Delivery Reviews, 2011, 63(6): 456−469. https://doi.org/10.1016/j.addr.2011.02.001

[33]

E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper. Nanosizing: A formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences, 2003, 18(2): 113−120. https://doi.org/10.1016/s0928-0987(02)00251-8

[34]

J.D. Engstrom, J.M. Tam, M.A. Miller, et al. Templated open flocs of nanorods for enhanced pulmonary delivery with pressurized metered dose inhalers. Pharmaceutical Research, 2009, 26(1): 101−117. https://doi.org/10.1007/s11095-008-9707-z

[35]

P.P. Constantinides, M.V. Chaubal, R. Shorr. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Advanced Drug Delivery Reviews, 2008, 60(6): 757−767. https://doi.org/10.1016/j.addr.2007.10.013

[36]

Z. Bourezg, S. Bourgeois, S. Pressenda, et al. Redispersible lipid nanoparticles of Spironolactone obtained by three drying methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413: 191−199. https://doi.org/10.1016/j.colsurfa.2012.03.027

[37]

N. Saffoon, R. Uddin, N.H. Huda, et al. Enhancement of oral bioavailability and solid dispersion: A review. Journal of Applied Pharmaceutical Science, 2011, 1(7): 13−20.

[38]

F. Lai, I. Franceschini, F. Corrias, et al. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study. Carbohydrate Polymers, 2015, 121: 217−223. https://doi.org/10.1016/j.carbpol.2014.11.070

[39]

K. Fuhrmann, G. Fuhrmann. Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Current Opinion in Colloid & Interface Science, 2017, 31: 67−74. https://doi.org/10.1016/j.cocis.2017.07.002

[40]

X. Zhang, J. Guan, R. Ni, et al. Preparation and solidification of redispersible nanosuspensions. Journal of Pharmaceutical Sciences, 2014, 103(7): 2166−2176. https://doi.org/10.1002/jps.24015

[41]

M. Kassem, A. Abdelrahman, M. Ghorab, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. International Journal of Pharmaceutics, 2007, 340(1–2): 126−133. https://doi.org/10.1016/j.ijpharm.2007.03.011

[42]

A. Shrivastava, S. Sakthivel, B. Pitchumani, et al. A statistical approach for estimation of significant variables in wet attrition milling. Powder Technology, 2011, 211(1): 46−53. https://doi.org/10.1016/j.powtec.2011.03.021

[43]

I. Ghosh, S. Bose, R. Vippagunta, et al. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. International Journal of Pharmaceutics, 2011, 409(1−2): 260−268. https://doi.org/10.1016/j.ijpharm.2011.02.051

[44]

C. Bucolo, F. Drago, S. Salomone. Ocular drug delivery: A clue from nanotechnology. Frontiers in Pharmacology, 2012, 3: 188. https://doi.org/10.3389/fphar.2012.00188

[45]

V. Kilor, N. Sapkal, A. Daud, et al. Development of stable nanosuspension loaded oral films of glimepiride with improved bioavailability. International Journal of Applied Pharmaceutics, 2017, 9(2): 28. https://doi.org/10.22159/ijap.2017v9i2.16714

[46]

A. Patel. Ocular drug delivery systems: An overview. World Journal of Pharmacology, 2013, 2(2): 47. https://doi.org/10.5497/wjp.v2.i2.47

[47]

C. Keck, R. Muller. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62(1): 3−16. https://doi.org/10.1016/j.ejpb.2005.05.009

[48]
R.H. Müller. Drug nanocrystals of poorly soluble drugs. In: Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, 2004: 627–638.
[49]
R.D. Petersen. Nanocrystals for use in topical formulations and method of production thereof. Germany Patent US9114077B2, 17 Nov. 2006.
[50]

R.H. Müller, C. M. Keck. Second generation of drug nanocrystals for delivery of poorly soluble drugs: smartCrystals technology. European Journal of Pharmaceutical Sciences, 2008, 34(1): S20−S21. https://doi.org/10.1016/j.ejps.2008.02.049

[51]

R. Jayaprakash, K. Krishnakumar, B. Dineshkumar, et al. Nanosuspension in drug delivery-A review. Scholars Academic Journal of Pharmacy, 2016, 5(5): 138−141.

[52]

R. Kesarla, T. Tank, P.A. Vora, et al. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Delivery, 2016, 23(7): 2363−2370. https://doi.org/10.3109/10717544.2014.987333

[53]

V.R. Patel., Y.K. Agrawal. Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2011, 2(2): 81−87. https://doi.org/10.4103/2231-4040.82950

[54]

P. Khare, M.M. Chogale, P. Kakade, et al. Gellan gum–based in situ gelling ophthalmic nanosuspension of Posaconazole. Drug Delivery and Translational Research, 2022, 12(12): 2920−2935. https://doi.org/10.1007/s13346-022-01155-0

[55]

T.J. Young, S. Mawson, K.P. Johnston, et al. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnology Progress, 2000, 16(3): 402−407. https://doi.org/10.1021/bp000032q

[56]

G. Geetha, U. Poojitha, K.A. Khan. Various techniques for preparation of nanosuspension-a review. International Journal of Pharma Research & Review, 2014, 3(9): 30−37.

[57]

B.S. Nayak, B. Mohanty, B. Roy, et al. Nanosuspension: Bioavailability enhancing novel approach. International Journal of Pharmacy and Biological Sciences, 2018, 8(2): 540−554.

[58]

K. Adibkia, Y. Omidi, M.R. Siahi, et al. Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. Journal of Ocular Pharmacology and Therapeutics, 2007, 23(5): 421−432. https://doi.org/10.1089/jop.2007.0039

[59]

S. Ghosh, P.C. Chiang, J.L. Wahlstrom, et al. Oral delivery of 1, 3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. Basic & Clinical Pharmacology & Toxicology, 2008, 102(5): 453−458. https://doi.org/10.1111/j.1742-7843.2008.00213.x

[60]

C. Detroja. Enhanced antihypertensive activity of candesartan cilexetil nanosuspension: Formulation, characterization and pharmacodynamic study. Scientia Pharmaceutica, 2011, 79(3): 635−651. https://doi.org/10.3797/scipharm.1103-17

[61]
Y.C. Wang, Y.Y. Ma, Y. Zheng, et al. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. International Journal of Pharmaceutics, 2013, 441(1–2): 728–735. https://doi.org/10.1016/j.ijpharm.2012.10.021
[62]

J. Kumar, A. Newton. Colon targeted rifaximin nanosuspension for the treatment of inflammatory bowel disease (IBD). Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 2016, 15(2): 101−117. https://doi.org/10.2174/1871523015666160720103732

[63]

B.P. Sahu, H. Hazarika, R. Bharadwaj, et al. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opinion on Drug Delivery, 2016, 13(8): 1065−1074. https://doi.org/10.1080/17425247.2016.1182486

[64]

J.W. Yao, B. Cui, X. Zhao, et al. Preparation, characterization, and evaluation of azoxystrobin nanosuspension produced by wet media milling. Applied Nanoscience, 2018, 8(3): 297−307. https://doi.org/10.1007/s13204-018-0745-5

[65]
K. Morteza-Semnani, M. Saeedi, J. Akbari, et al. Fluconazole nanosuspension enhances in vitro antifungal activity against resistant strains of Candida albicans. Pharmaceutical Sciences, 2021, 28(1): 112–129. https://doi.org/10.34172/ps.2021.21
[66]

A.Z.G. Al Ashmawy, N.G. Eissa, H.M. El Nahas, et al. Fast disintegrating tablet of Doxazosin Mesylate nanosuspension: Preparation and characterization. Journal of Drug Delivery Science and Technology, 2021, 61: 102210. https://doi.org/10.1016/j.jddst.2020.102210

[67]

P. Lakshmi, G.A. Kumar. Nanosuspension technology: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 2010, 2: 35−40.

[68]

M. Patel, A. Shah, N.M. Patel, et al. Nanosuspension: A novel approach for drug delivery system. Journal of Pharmaceutical Science and Bioscientific Research, 2011, 1(1): 1−10.

[69]

C. Jacobs, R.H. Müller. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharmaceutical Research, 2002, 19(2): 189−194. https://doi.org/10.1023/A:1014276917363

[70]

K.B. Sutradhar, S. Khatun, I.P. Luna. Increasing possibilities of nanosuspension. Journal of Nanotechnology, 2013, 2013: 346581. https://doi.org/10.1155/2013/346581

[71]

S.R. Deshiikan, K.D. Papadopoulos. Modified Booth equation for the calculation of zeta potential. Colloid and Polymer Science, 1998, 276(2): 117−124. https://doi.org/10.1007/s003960050218

[72]

H.M. Patel, B.B. Patel, C.N. Shah. Nanosuspension: A novel approach to enhance solubility of poorly water soluble drugs-A review. International Journal Advances in Pharmaceutics, 2016, 5: 21−29.

[73]

R. Yadollahi, K. Vasilev, S. Simovic. Nanosuspension technologies for delivery of poorly soluble drugs. Journal of Nanomaterials, 2015, 2015: 216375. https://doi.org/10.1155/2015/216375

[74]

A. Chandra, U. Sharma, S.K. Jain, et al. Nanosuspension: An overview. Journal of Drug Delivery and Therapeutics, 2013, 3(6): 162−167. https://doi.org/10.22270/jddt.v3i6.677

[75]

Y.J. Chen, J. Liu, X.L. Yang, et al. Oleanolic acid nanosuspensions: Preparation, in-vitro characterization and enhanced hepatoprotective effect. Journal of Pharmacy and Pharmacology, 2010, 57(2): 259−264. https://doi.org/10.1211/0022357055407

[76]

K.B. Krishna, C. Prabhakar. A review on nanosuspensions in drug delivery. International Journal of Pharma and Bio Sciences, 2011, 2(1): 549−558.

[77]

R.L. Shid, S.N. Dhole, N. Kulkarni, et al. Nanosuspension: a review. International Journal of Pharmaceutical Sciences Review and Research, 2013, 22: 98−106.

[78]

H. Chinthaginjala, H.A. Ahad, P.G. Reddy, et al. Nanosuspension as promising and potential drug delivery: A review. International Journal of Life Science and Pharma Research, 2022, 11: 59−66. https://doi.org/10.22376/ijpbs/lpr.2021.11.1.p59-66

[79]

R. Shivhare, A. Pathak, N. Shrivastava, et al. An update review on novel advanced ocular drug delivery system. World Journal of Pharmacy and Pharmaceutical Sciences, 2012, 1(2): 545−568.

[80]

S. Nayak , D. Panda, J. Sahoo. Nanosuspension: A novel drug delivery system. Journal of Pharmacy Research, 2010, 3(2): 241−246.

[81]

R. Pignatello, C. Bucolo, P. Ferrara, et al. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. European Journal of Pharmaceutical Sciences, 2002, 16(1–2): 53−61. https://doi.org/10.1016/s0928-0987(02)00057-x

[82]

J.S. Paun, H.M. Tank. Nanosuspension: An emerging trend for bioavailability enhancement of poorly soluble drugs. Asian Journal of pharmacy and Technology, 2012, 2: 157−168.

[83]

N. Arunkumar, M. Deecaraman, C. Rani. Nanosuspension technology and its applications in drug delivery. Asian Journal of Pharmaceutics, 2009, 3(3): 168. https://doi.org/10.4103/0973-8398.56293

[84]

F. Leone, R. Cavalli. Drug nanosuspensions: A ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opinion on Drug Delivery, 2015, 12(10): 1607−1625. https://doi.org/10.1517/17425247.2015.1043886

[85]

H.Y. Piao, N. Kamiya, A. Hirata, et al. A novel solid-in-oil nanosuspension for transdermal delivery of diclofenac sodium. Pharmaceutical Research, 2008, 25(4): 896−901. https://doi.org/10.1007/s11095-007-9445-7

[86]
M.J. Chen, H.W. Hui, T. Lee, et al. Nanosuspension of a poorly soluble drug via microfluidization process. United States patent US 9,616,019. 11 Apr. 2017.
[87]
D.S. Chow, T.S. Samant, S.M. Tu. University of Texas System, University of Houston System, assignee. Injectable diethylstilbestrol nanosuspension formulation. United States patent application US 16/636,478. 6 Aug. 2020.
[88]
J.P. Remon, C. Vervaet. Universiteit Gent, assignee. Pharmaceutical nanosuspension. United States patent US 10,251,866. 9 Apr. 2019.
[89]

A. Karakucuk, S. Tort, S. Han, et al. Etodolac nanosuspension based gel for enhanced dermal delivery: invitro and invivo evaluation. Journal of Microencapsulation, 2021, 38(4): 218−232. https://doi.org/10.1080/02652048.2021.1895344

[90]

Y. Manogaran, P.K. Sharma, Vivek, et al. Response of new sesamol analogue and Sesamum indicum seeds extract against meningitis triggering pathogens. Journal of Pharmaceutical Negative Results, 2022, 13(4): 2270−2280.

[91]
Dzakwan, M., Pramukantoro, G. E., Mauludin, R., Wikarsa, S. Formulation and characterization of fisetin nanosuspension. IOP Conference Series: Materials Science and Engineering, 2017, 259: 012016. https://doi.org/10.1088/1757-899x/259/1/012016
[92]
D.D. Gadade, S.S. Pekamwar. Cyclodextrin based nanoparticles for drug delivery and theranostics. Advanced Pharmaceutical Bulletin, 2020, 10(2): 166–183. https://doi.org/10.34172/apb.2020.022
[93]

A.J. Amkar, B.R. Rane, A.S. Jain. Development and evaluation of nanosuspension loaded nanogel of nortriptyline HCl for brain delivery. Engineering Proceedings, 2023, 56(1): 58. https://doi.org/10.3390/asec2023-15311

[94]

S.M. Shahidulla, R. Miskan, S. Sultana. Nanosuspensions in pharmaceutical sciences: A comprehensive review. International Journal of Health Sciences and Research, 2023, 13(7): 332−342. https://doi.org/10.52403/ijhsr.20230745

[95]

K.P. Johnston, J.A. Maynard, T.M. Truskett, et al. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers. ACS Nano, 2012, 6(2): 1357−1369. https://doi.org/10.1021/nn204166z

[96]

S. Jacob, A.B. Nair, J. Shah. Emerging role of nanosuspensions in drug delivery systems. Biomaterials Research, 2020, 24(1): s40824−020-0184-8. https://doi.org/10.1186/s40824-020-0184-8

[97]

A. Haroun, A. Osman, S. Ahmed, et al. Synthesis and characterization of ibuprofen delivery system based on β-cyclodextrin/itaconic acid copolymer. Trends in Sciences, 2022, 19(19): 5825. https://doi.org/10.48048/tis.2022.5825

[98]
A.A. Haroun, R.A. Masoud. Preparation and characterization of oxidized multi-walled carbon nanotubes-immobilized Aspergillus sp. Laccase hybrid materials. International Research Journal of Multidisciplinary Technovation, 2021, 3(4): 83–92.
[99]
Y. Santhosh Kumar, C. Gurudeva, G. Sridevi, et al. Nanotechnology’s impact on ocular drug delivery: A meta-analysis-based examination. Nano Biomedicine and Engineering, 2024. https://doi.org/10.26599/NBE.2024.9290081
[100]
J.H. Patil, J.K. Patel, U.A. Shah, et al. A comprehensive review on metal–organic frameworks for stimuli-responsive-based drug delivery: Recent advances and future trends. Nano Biomedicine and Engineering, 2024. https://doi.org/10.26599/nbe.2024.9290078
[101]

Y.H. Wu, J.F. Zhang, W. He, et al. Nanomaterials for targeting liver disease: Research progress and future perspectives. Nano Biomedicine and Engineering, 2023, 15(2): 199−224. https://doi.org/10.26599/nbe.2023.9290024

Nano Biomedicine and Engineering
Cite this article:
Mane NP, Rane BR, Jain AS. Advances in Nanosuspension Technology: Current Trends and Future Horizons. Nano Biomedicine and Engineering, 2024, https://doi.org/10.26599/NBE.2024.9290092

136

Views

34

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 25 May 2024
Revised: 19 June 2024
Accepted: 14 July 2024
Published: 04 September 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return