AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access | Online First

Multifunctional Hydrogels for Biomedical Applications

Hamza Tanveer1( )Asma Sarfraz2Aarfeen Fatima3Shumaila Sarwar4
Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
Shifa Tameer-e-Millat University of pharmaceutical sciences, Islamabad, Pakistan
Akson College of Pharmacy Joint Venture with Mirpur University of Science and Technology, Mirpur AJK, Pakistan
Lahore Institute of Professional Studies, Lahore, Pakistan
Show Author Information

Graphical Abstract

Abstract

Multifunctional hydrogels incorporating nanocarriers are at the cutting edge of biomedical research, providing innovative solutions for targeted drug delivery and tissue engineering. Nanocarrier-loaded hydrogels can deliver multiple therapeutic agents therapeutics in a controlled and sequential manner owing to the unique properties of the polymers used for preparing these hydrogels. Hydrogels can be constructed from natural, semisynthetic, and synthetic polymers and have found use in contact lenses and wound dressings as well as in drug delivery for treating cancer, diabetes, bacterial infections, and other pathological conditions. This review discusses various types of hydrogels, their fabrication methods, and their applications in targeted drug delivery, including insights from completed and ongoing clinical trials. Furthermore, this review examines innovative diagnostic and therapeutic systems based on complex and multifunctional polymeric nanocarriers.

References

[1]

O.C. Farokhzad, R. Langer. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16−20. https://doi.org/10.1021/nn900002m

[2]

V.P. Torchilin. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. The AAPS Journal, 2007, 9(2): 15. https://doi.org/10.1208/aapsj0902015

[3]

S. Salatin, J. Barar, M. Barzegar-Jalali, et al. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Archives of Pharmacal Research, 2016, 39(9): 1181−1192. https://doi.org/10.1007/s12272-016-0782-0

[4]

J. Shin, P.V. Braun, W. Lee. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensors and Actuators B: Chemical, 2010, 150(1): 183−190. https://doi.org/10.1016/j.snb.2010.07.018

[5]

A.C. Manjua, V.D. Alves, J.G. Crespo, et al. Magnetic responsive PVA hydrogels for remote modulation of protein sorption. ACS Applied Materials & Interfaces, 2019, 11(23): 21239−21249. https://doi.org/10.1021/acsami.9b03146

[6]

L.B. Zhang, S.R. Jean, S. Ahmed, et al. Multifunctional quantum dot DNA hydrogels. Nature Communications, 2017, 8: 381. https://doi.org/10.1038/s41467-017- 00298-w

[7]

S.H. Li, N.C. Chen, E.R. Gaddes, et al. A Drosera-bioinspired hydrogel for catching and killing cancer cells. Scientific Reports, 2015, 5: 14297. https://doi.org/10.1038/srep14297

[8]

W.W. Gao, Y. Zhang, Q.Z. Zhang, et al. Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery. Annals of Biomedical Engineering, 2016, 44(6): 2049−2061. https://doi.org/10.1007/s10439-016-1583-9

[9]

T. Ishihara, M. Takahashi, M. Higaki, et al. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. International Journal of Pharmaceutics, 2010, 385(1-2): 170−175. https://doi.org/10.1016/j.ijpharm.2009.10.025

[10]

X.Y. Ding, G. Li, C.S. Xiao, et al. Enhancing the stability of hydrogels by doubling the schiff base linkages. Macromolecular Chemistry and Physics, 2019, 220(3): 1800484. https://doi.org/10.1002/macp.201800484

[11]

M.S. Shoichet, R.H. Li, M.L. White, et al. Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose. Biotechnology and Bioengineering, 1996, 50(4): 374−381. 3.0.co;2-i">https://doi.org/10.1002/(sici)1097-0290(19960520)50:4<374::aid-bit4>3.0.co;2-i

[12]
World Health Organization. Available at https://www.who.int/news-room/fact-sheets/detail/cancer. (Accessed in Feb. 2022
[13]
World Health Organization. Available at https://www.who.int/news-room/fact-sheets/detail/diabetes. (Accessed in Sept. 2022
[14]
World Health Organization. Available at https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). (Accessed in June 2021
[15]

Y.N. Sun, D. Nan, H.Q. Jin, et al. Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polymer Testing, 2020, 81: 106283. https://doi.org/10.1016/j.polymertesting.2019.106283

[16]

K. Cho, X. Wang, S.M. Nie, et al. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 2008, 14(5): 1310−1316. https://doi.org/10.1158/1078-0432.ccr-07-1441

[17]

N. Farshidfar, N. Tanideh, Z. Emami, et al. Incorporation of curcumin into collagen-multiwalled carbon nanotubes nanocomposite scaffold: An invitro and invivo study. Journal of Materials Research and Technology, 2022, 21: 4558−4576. https://doi.org/10.1016/j.jmrt.2022.11.022

[18]

A. Akhmetzhan, N. Abeu, S.N. Longinos, et al. Synthesis and heavy-metal sorption studies of N, N-dimethylacrylamide-based hydrogels. Polymers, 2021, 13(18): 3084. https://doi.org/10.3390/polym13183084

[19]

M.W. Grinstaff. Dendritic macromers for hydrogel formation: Tailored materials for ophthalmic, orthopedic, and biotech applications. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(2): 383−400. https://doi.org/10.1002/pola.22525

[20]

Y.H. Yeo, W.H. Park. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels. Carbohydrate Polymers, 2021, 258: 117705. https://doi.org/10.1016/j.carbpol.2021.117705

[21]

Z.B. Feng, H.L. Zuo, W.S. Gao, et al. A robust, self-healable, and shape memory supramolecular hydrogel by multiple hydrogen bonding interactions. Macromolecular Rapid Communications, 2018, 39(20): 1800138. https://doi.org/10.1002/marc.201800138

[22]

A. Amirova, S. Rodchenko, M. Kurlykin, et al. Synthesis and investigation of thermo-induced gelation of partially cross-linked poly-2-isopropyl-2-oxazoline in aqueous media. Polymers, 2020, 12(3): 698. https://doi.org/10.3390/polym12030698

[23]

K. Nagase. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Advances in Colloid and Interface Science, 2021, 295: 102487. https://doi.org/10.1016/j.cis.2021.102487

[24]

A. Dodero, L. Pianella, S. Vicini, et al. Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. European Polymer Journal, 2019, 118: 586−594. https://doi.org/10.1016/j.eurpolymj.2019.06.028

[25]

S.C. Ji, X.Y. Li, S. Wang, et al. Physically entangled antiswelling hydrogels with high stiffness. Macromolecular Rapid Communications, 2022, 43(19): 2200272. https://doi.org/10.1002/marc.202200272

[26]

D. Eagland, N.J. Crowther, C.J. Butler. Complexation between polyoxyethylene and polymethacrylic acid—The importance of the molar mass of polyoxyethylene. European Polymer Journal, 1994, 30(7): 767−773. https://doi.org/10.1016/0014-3057(94)90003-5

[27]

J. Cappello, J. Crissman, M. Dorman, et al. Genetic engineering of structural protein polymers. Biotechnology Progress, 1990, 6(3): 198−202. https://doi.org/10.1021/bp00003a006

[28]

K.P. McGrath, M.J. Fournier, T.L. Mason, et al. Genetically directed syntheses of new polymeric materials. Expression of artificial genes encoding proteins with repeating-(AlaGly)3ProGluGly- elements. Journal of the American Chemical Society, 1992, 114(2): 727−733. https://doi.org/10.1021/ja00028a048

[29]

F. Ali, I. Khan, J.M. Chen, et al. Emerging fabrication strategies of hydrogels and its applications. Gels, 2022, 8(4): 205. https://doi.org/10.3390/gels8040205

[30]

K.S. Lim, B.J. Klotz, G.C.J. Lindberg, et al. Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromolecular Bioscience, 2019, 19(6): 1900098. https://doi.org/10.1002/mabi.201900098

[31]

A. Hendi, M. Umair Hassan, M. Elsherif, et al. Healthcare applications of pH-sensitive hydrogel-based devices: A review. International Journal of Nanomedicine, 2020, 15: 3887−3901. https://doi.org/10.2147/ijn.s245743

[32]

X.F. Feng, X.L. Hou, C.J. Cui, et al. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Engineered Regeneration, 2021, 2: 57−62. https://doi.org/10.1016/j.engreg.2021.05.002

[33]

Y.L. Sun, Y.B. Huang. Disulfide-crosslinked albumin hydrogels. Journal of Materials Chemistry B, 2016, 4(16): 2768−2775. https://doi.org/10.1039/c6tb00247a

[34]

H. Rahnama, S. Nouri Khorasani, A. Aminoroaya, et al. Facile preparation of chitosan-dopamine-inulin aldehyde hydrogel for drug delivery application. International Journal of Biological Macromolecules, 2021, 185: 716−724. https://doi.org/10.1016/j.ijbiomac.2021.06.199

[35]

D. Ray, P.S. Gils, G.P. Mohanta, et al. Comparative delivery of Diltiazem hydrochloride through synthesized polymer: Hydrogel and hydrogel microspheres. Journal of Applied Polymer Science, 2010, 116(2): 959−968. https://doi.org/10.1002/app.31661

[36]

M. Yamamoto, Y. Tabata, L. Hong, et al. Bone regeneration by transforming growth factor β1 released from a biodegradable hydrogel. Journal of Controlled Release, 2000, 64(1-3): 133−142. https://doi.org/10.1016/s0168-3659(99)00129-7

[37]

D.Q. Li, S.Y. Wang, Y.J. Meng, et al. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydrate Polymers, 2021, 268: 118244. https://doi.org/10.1016/j.carbpol.2021.118244

[38]

L. Simonsen, L. Hovgaard, P.B. Mortensen, et al. Dextran hydrogels for colon-specific drug delivery. V. Degradation in human intestinal incubation models. European Journal of Pharmaceutical Sciences, 1995, 3(6): 329−337. https://doi.org/10.1016/0928-0987(95)00023-6

[39]

C.M. Ofner, W.A. Bubnis. Chemical and swelling evaluations of amino group crosslinking in gelatin and modified gelatin matrices. Pharmaceutical Research, 1996, 13(12): 1821−1827. https://doi.org/10.1023/A:1016029023910

[40]
S.A. Zhu, P.F. Chen, Y. Chen, et al. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. The American Journal of Sports Medicine, 2020, 48(11): 2808–2818. https://doi.org/10.1177/0363546520941842
[41]

I. Cazin, E. Rossegger, G. Guedes de la Cruz, et al. Recent advances in functional polymers containing coumarin chromophores. Polymers, 2020, 13(1): 56. https://doi.org/10.3390/polym13010056

[42]

Y. Wang, P. Katyal, J.K. Montclare. Engineered proteins: Protein-engineered functional materials (adv. healthcare mater. 11/2019). Advanced Healthcare Materials, 2019, 8(11): 1801374. https://doi.org/10.1002/ adhm.201970047

[43]

G. Kowalski, K. Kijowska, M. Witczak, et al. Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers, 2019, 11(1): 114. https://doi.org/10.3390/polym11010114

[44]

E. Chiani, A. Beaucamp, Y. Hamzeh, et al. Synthesis and characterization of gelatin/lignin hydrogels as quick release drug carriers for Ribavirin. International Journal of Biological Macromolecules, 2023, 224: 1196−1205. https://doi.org/10.1016/j.ijbiomac.2022.10.205

[45]

M. Okawa, A. Tanabe, S. Ohta, et al. Extracellular matrix-inspired hydrogel of hyaluronan and gelatin crosslinked via a Link module with a transglutaminase reactive sequence. Communications Materials, 2022, 3: 81. https://doi.org/10.1038/s43246-022-00309-4

[46]

C.J. Tormos, C. Abraham, S.V. Madihally. Improving the stability of chitosan–gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline. Drug Delivery and Translational Research, 2015, 5(6): 575−584. https://doi.org/10.1007/s13346-015-0258-7

[47]

T.T. Hoang Thi, Y. Lee, P. Le Thi, et al. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. Journal of Industrial and Engineering Chemistry, 2019, 78: 34−52. https://doi.org/10.1016/j.jiec.2019.05.026

[48]

J.X. Hou, C. Li, Y. Guan, et al. Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polymer Chemistry, 2015, 6(12): 2204−2213. https://doi.org/10.1039/c4py01757a

[49]

M.M. Islam, D.B. AbuSamra, A. Chivu, et al. Optimization of collagen chemical crosslinking to restore biocompatibility of tissue-engineered scaffolds. Pharmaceutics, 2021, 13(6): 832. https://doi.org/10.3390/pharmaceutics13060832

[50]

A. Sharma, H. Chopra, I. Singh, et al. Physically and chemically crosslinked hydrogels for wound healing applications. International Journal of Surgery, 2022, 106: 106915. https://doi.org/10.1016/j.ijsu.2022.106915

[51]

A. Serafin, M. Culebras, M.N. Collins. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. International Journal of Biological Macromolecules, 2023, 233: 123438. https://doi.org/10.1016/j.ijbiomac.2023.123438

[52]

M.L. Pita-López, G. Fletes-Vargas, H. Espinosa-Andrews, et al. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal, 2021, 145: 110176. https://doi.org/10.1016/j.eurpolymj.2020.110176

[53]
A. Zennifer, S. Manivannan, S. Sethuraman, et al. 3D bioprinting and photocrosslinking: Emerging strategies &amp; future perspectives. Biomaterials Advances, 2022, 134: 112576. https://doi.org/10.1016/j.msec.2021.112576
[54]

Z.L. Bian, Y. Qi, L. Xue, et al. Glucose biosensing based on a hydrogel optical fiber immobilized with glucose oxidase. Optik, 2022, 255: 168655. https://doi.org/10.1016/j.ijleo.2022.168655

[55]

A.C. Alavarse, E.C.G. Frachini, R.L.C.G. da Silva, et al. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. International Journal of Biological Macromolecules, 2022, 202: 558−596. https://doi.org/10.1016/j.ijbiomac.2022.01.029

[56]

Q.C. Wei, J.X. Duan, G.L. Ma, et al. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. Journal of Materials Chemistry B, 2019, 7(13): 2220−2225. https://doi.org/10.1039/c8tb03147a

[57]
K. Kuperkar, S. Tiwari, P. Bahadur. Self-assembled block copolymer nanoaggregates for drug delivery applications. In: Applications of Polymers in Drug Delivery. Amsterdam: Elsevier, 2021: 423–447. https://doi.org/10.1016/b978-0-12-819659-5.00015-x
[58]

S. Ishikawa, K. Iijima, D.Matsukuma, et al. Interpenetrating polymer network hydrogels via a one-pot and in situ gelation system based on peptide self-assembly and orthogonal cross-linking for tissue regeneration. Chemistry of Materials, 2020, 32(6): 2353−2364. https://doi.org/10.1021/acs.chemmater.9b04725

[59]

A. Moreira, J. Carneiro, J.B.L.M. Campos, et al. Production of hydrogel microparticles in microfluidic devices: A review. Microfluidics and Nanofluidics, 2021, 25(2): 10. https://doi.org/10.1007/s10404-020-02413-8

[60]

T.T. Liu, W.X. Weng, Y.Z. Zhang, et al. Applications of gelatin methacryloyl (GelMA) hydrogels in microfluidic technique-assisted tissue engineering. Molecules, 2020, 25(22): 5305. https://doi.org/10.3390/molecules25225305

[61]

O.C. Gunes, A. Kara, G. Baysan, et al. Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering. Journal of Biomaterials Applications, 2022, 37(4): 683−697. https://doi.org/10.1177/08853282221109339

[62]

K.X. Nie, S.S. Han, J.M. Yang, et al. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers, 2020, 12(9): 1977. https://doi.org/10.3390/polym12091977

[63]

S. Biswas, M. Haouas, C. Freitas, et al. Engineering of metal–organic frameworks/gelatin hydrogel composites mediated by the coacervation process for the capture of acetic acid. Chemistry of Materials, 2022, 34(21): 9760−9774. https://doi.org/10.1021/acs.chemmater.2c02704

[64]

X. Peng, Y. Li, T.J. Li, et al. Coacervate-derived hydrogel with effective water repulsion and robust underwater bioadhesion promotes wound healing. Advanced Science, 2022, 9(31): 2203890. https://doi.org/10.1002/advs.202203890

[65]

C. Vasile, D. Pamfil, E. Stoleru, et al. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules, 2020, 25(7): 1539. https://doi.org/10.3390/molecules25071539

[66]

Y.L. Yin, B. Hu, X. Yuan, et al. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics, 2020, 12(3): 290. https://doi.org/10.3390/pharmaceutics12030290

[67]
L.E. Theune, J. Buchmann, S. Wedepohl, et al. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. Journal of Controlled Release, 2019, 311–312: 147–161. https://doi.org/10.1016/j.jconrel.2019.08.035
[68]

C. Chouhan, R.P.S. Rajput, R. Sahu, et al. An updated review on nanoparticle based approach for nanogel drug delivery system. Journal of Drug Delivery and Therapeutics, 2020, 10(5-s): 254−266. https://doi.org/10.22270/jddt.v10i5-s.4465

[69]

E. Mauri, S.M. Giannitelli, M. Trombetta, et al. Synthesis of nanogels: Current trends and future outlook. Gels, 2021, 7(2): 36. https://doi.org/10.3390/gels7020036

[70]

H. Wu, J. Dong, X.W. Zhan, et al. Triple stimuli-responsive crosslinked polymeric nanoparticles for controlled release. RSC Advances, 2014, 4(67): 35757. https://doi.org/10.1039/c4ra05661b

[71]
S. Sultan, A.P. Mathew. Three-dimensional printing of nanocellulose-based hydrogels. In: Nano Hydrogels. Singapore: Springer, 2021: 1−20. https://doi.org/10.1007/978-981-15-7138-1_1
[72]

H.S. Qiao, X.M. Chen, E.P. Chen, et al. Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy. Biomaterials Science, 2019, 7(7): 2749−2758. https://doi.org/10.1039/c9bm00324j

[73]

Z.H. Wang, Q.Z. Ye, S. Yu, et al. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy. Advanced Healthcare Materials, 2023, 12(18): 2300105. https://doi.org/10.1002/adhm.202300105

[74]

H. Saito, A.S. Hoffman, H.I. Ogawa. Delivery of doxorubicin from biodegradable PEG hydrogels having schiff base linkages. Journal of Bioactive and Compatible Polymers, 2007, 22(6): 589−601. https://doi.org/10.1177/0883911507084653

[75]

S. Arpicco, G. De Rosa, E. Fattal. Lipid-based nanovectors for targeting of CD44-overexpressing tumor cells. Journal of Drug Delivery, 2013, 2013: 860780. https://doi.org/10.1155/2013/860780

[76]
V.B. Lokeshwar, S. Mirza, A. Jordan. Targeting hyaluronic acid family for cancer chemoprevention and therapy. In: Advances in Cancer Research. Amsterdam: Elsevier, 2014: 35–65. https://doi.org/10.1016/b978-0-12-800092-2.00002-2
[77]

Y.J. Jo, M. Gulfam, S.H. Jo, et al. Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application. Carbohydrate Polymers, 2022, 286: 119303. https://doi.org/10.1016/j.carbpol.2022.119303

[78]

N. Sanoj Rejinold, P.R. Sreerekha, K.P. Chennazhi, et al. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules, 2011, 49(2): 161−172. https://doi.org/10.1016/j.ijbiomac.2011.04.008

[79]

Y.C. Chang, D.B. Shieh, C.H. Chang, et al. Conjugation of monodisperse chitosan-bound magnetic nanocarrier with epirubicin for targeted cancer therapy. Journal of Biomedical Nanotechnology, 2005, 1(2): 196−201. https://doi.org/10.1166/jbn.2005.021

[80]

Q. Yuan, R. Venkatasubramanian, S. Hein, et al. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomaterialia, 2008, 4(4): 1024−1037. https://doi.org/10.1016/j.actbio.2008.02.002

[81]

H.D. Han, C.K. Song, Y.S. Park, et al. A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. International Journal of Pharmaceutics, 2008, 350(1-2): 27−34. https://doi.org/10.1016/j.ijpharm.2007.08.014

[82]

H.M. Abdel-Bar, A.Y. Abdel-Reheem, R. Osman, et al. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. International Journal of Pharmaceutics, 2014, 477(1-2): 623−630. https://doi.org/10.1016/j.ijpharm.2014.11.005

[83]

S. Kim, S.K. Nishimoto, J.D. Bumgardner, et al. A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials, 2010, 31(14): 4157−4166. https://doi.org/10.1016/j.biomaterials.2010.01.139

[84]

A. López-Noriega, C.L. Hastings, B. Ozbakir, et al. Hyperthermia-induced drug delivery from thermosensitive liposomes encapsulated in an injectable hydrogel for local chemotherapy. Advanced Healthcare Materials, 2014, 3(6): 854−859. https://doi.org/10.1002/adhm.201300649

[85]

D. Zhang, P. Sun, P. Li, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials, 2013, 34(38): 10258−10266. https://doi.org/10.1016/j.biomaterials.2013.09.027

[86]

A. Monette, C. Ceccaldi, E. Assaad, et al. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials, 2016, 75: 237−249. https://doi.org/10.1016/j.biomaterials.2015.10.021

[87]

C.T. Tsao, F.M. Kievit, A. Ravanpay, et al. Thermoreversible poly(ethylene glycol)- g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules, 2014, 15(7): 2656−2662. https://doi.org/10.1021/bm500502n

[88]

E. Moysan, Y. González-Fernández, N. Lautram, et al. An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: When the drug is a key player of the nanomedicine structure. Soft Matter, 2014, 10(11): 1767. https://doi.org/10.1039/c3sm52781f

[89]
R. Price, A.Poursaid, J. Cappello, et al. In vivo evaluation of matrix metalloproteinase responsive silk–elastinlike protein polymers for cancer gene therapy. Journal of Controlled Release, 2015, 213: 96–102. https://doi.org/10.1016/j.jconrel.2015.06.022
[90]

D.Y. Kim, D.Y. Kwon, J.S. Kwon, et al. Synergistic anti-tumor activity through combinational intratumoral injection of an in situ injectable drug depot. Biomaterials, 2016, 85: 232−245. https://doi.org/10.1016/j.biomaterials.2016.02.001

[91]

J.K. Cho, J.M. Hong, T. Han, et al. Injectable and biodegradable poly(organophosphazene) hydrogel as a delivery system of docetaxel for cancer treatment. Journal of Drug Targeting, 2013, 21(6): 564−573. https://doi.org/10.3109/1061186x.2013.776055

[92]

A. Lalloo, P.Y. Chao, P.D. Hu, et al. Pharmacokinetic and pharmacodynamic evaluation of a novel in situ forming poly(ethylene glycol)-based hydrogel for the controlled delivery of the camptothecins. Journal of Controlled Release, 2006, 112(3): 333−342. https://doi.org/10.1016/j.jconrel.2006.03.002

[93]

W.W. Wang, H.J. Song, J. Zhang, et al. An injectable, thermosensitive and multicompartment hydrogel for simultaneous encapsulation and independent release of a drug cocktail as an effective combination therapy platform. Journal of Controlled Release, 2015, 203: 57−66. https://doi.org/10.1016/j.jconrel.2015.02.015

[94]

N. Lei, C.Y. Gong, Z.Y. Qian, et al. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model. Nanoscale, 2012, 4(18): 5686. https://doi.org/10.1039/c2nr30731f

[95]
Y.S. Wang, C.Y. Gong, L. Yang, et al. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice. BMC Cancer, 2010, 10(1): 402. https://doi.org/10.1186/1471-2407-10-402
[96]

Z.X. Wu, X.Y. Zou, L.L. Yang, et al. Thermosensitive hydrogel used in dual drug delivery system with paclitaxel-loaded micelles for in situ treatment of lung cancer. Colloids and Surfaces B: Biointerfaces, 2014, 122: 90−98. https://doi.org/10.1016/j.colsurfb.2014.06.052

[97]

G.T. Chang, T.Y. Ci, L. Yu, et al. Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel. Journal of Controlled Release, 2011, 156(1): 21−27. https://doi.org/10.1016/j.jconrel.2011.07.008

[98]

M. Rajan, V. Raj, A.A. Al-Arfaj, et al. Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles. International Journal of Pharmaceutics, 2013, 453(2): 514−522. https://doi.org/10.1016/j.ijpharm.2013.06.030

[99]

D. Fukumura, R.K. Jain. Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvascular Research, 2007, 74(2-3): 72−84. https://doi.org/10.1016/j.mvr.2007.05.003

[100]

J. Liu, H.X. Li, X.Q. Jiang, et al. Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel. Carbohydrate Polymers, 2010, 82(2): 432−439. https://doi.org/10.1016/j.carbpol.2010.04.084

[101]

N.M. Oh, K.T. Oh, H.J. Baik, et al. A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2010, 78(1): 120−126. https://doi.org/10.1016/j.colsurfb.2010.02.023

[102]

W.T. Wu, J. Shen, P. Banerjee, et al. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 2010, 31(32): 8371−8381. https://doi.org/10.1016/j.biomaterials.2010.07.061

[103]
D.R. Nogueira, L. Tavano, M. Mitjans, et al. Invitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 2013, 34(11): 2758–2772. https://doi.org/10.1016/j.biomaterials.2013.01.005
[104]

A.M. Puga, A.C. Lima, J.F. Mano, et al. Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers, 2013, 98(1): 331−340. https://doi.org/10.1016/j.carbpol.2013.05.091

[105]

C. Feng, Z.G. Wang, C.Q. Jiang, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2013, 457(1): 158−167. https://doi.org/10.1016/j.ijpharm.2013.07.079

[106]
Y.H. Jin, H.Y. Hu, M.X. Qiao, et al. pH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: Preparation and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2012, 94: 184–191. https://doi.org/10.1016/j.colsurfb.2012.01.032
[107]

G. Unsoy, S. Yalcin, R. Khodadust, et al. Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy. Biomedicine & Pharmacotherapy, 2014, 68(5): 641−648. https://doi.org/10.1016/j.biopha.2014.04.003

[108]
S. Dai, P. Ravi, K.C. Tam. pH-Responsive polymers: Synthesis, properties and applications. Soft Matter, 2008, 4(3): 435. https://doi.org/10.1039/b714741d
[109]
G. Kocak, C. Tuncer, V. Bütün. pH-Responsive polymers. Polymer Chemistry, 2017, 8(1): 144–176. https://doi.org/10.1039/c6py01872f
[110]

C.D. Ding, L. Tong, J. Feng, et al. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules, 2016, 21(12): 1715. https://doi.org/10.3390/molecules21121715

[111]
J. Li, W.Q. Hu, Y.J. Zhang, et al. pH and glucose dually responsive injectable hydrogel prepared by in situ crosslinking of phenylboronic modified chitosan and oxidized dextran. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(10): 1235–1244. https://doi.org/10.1002/pola.27556
[112]

C.X. Ding, L.L. Zhao, F.Y. Liu, et al. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules, 2010, 11(4): 1043−1051. https://doi.org/10.1021/bm1000179

[113]

A. El-Sayed, M. Kamel. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environmental Science and Pollution Research, 2020, 27(16): 19200−19213. https://doi.org/10.1007/s11356-019-06459-2

[114]

J. Basso, A. Miranda, S. Nunes, et al. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels, 2018, 4(3): 62. https://doi.org/10.3390/gels4030062

[115]

L.E. Kass, J. Nguyen. Nanocarrier-hydrogel composite delivery systems for precision drug release. WIREs Nanomedicine and Nanobiotechnology, 2022, 14(2): e1756. https://doi.org/10.1002/wnan.1756

[116]

V. Agrahari, V. Agrahari, A. Mandal, et al. How are we improving the delivery to back of the eye? Advances and challenges of novel therapeutic approaches. Expert Opinion on Drug Delivery, 2017, 14(10): 1145−1162. https://doi.org/10.1080/17425247.2017.1272569

[117]

B. Begines, T. Ortiz, M. Pérez-Aranda, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7): 1403. https://doi.org/10.3390/nano10071403

[118]

C. Adhikari. Polymer nanoparticles-preparations, applications and future insights: A concise review. Polymer-Plastics Technology and Materials, 2021, 60(18): 1996−2024. https://doi.org/10.1080/25740881.2021.1939715

[119]

M.J. Mitchell, M.M. Billingsley, R.M. Haley, et al. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20(2): 101−124. https://doi.org/10.1038/s41573-020-0090-8

[120]

E. Bellotti, A.L. Schilling, S.R. Little, et al. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. Journal of Controlled Release, 2021, 329: 16−35. https://doi.org/10.1016/j.jconrel.2020.11.049

[121]

Y.Y. Wang, Q.L. Li, J.G. Zhou, et al. A photopolymerized semi-interpenetrating polymer networks-based hydrogel incorporated with nanoparticle for local chemotherapy of tumors. Pharmaceutical Research, 2021, 38(4): 669−680. https://doi.org/10.1007/s11095-021-03029-5

[122]

Q. Peng, X. Sun, T. Gong, et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomaterialia, 2013, 9(2): 5063−5069. https://doi.org/10.1016/j.actbio.2012.09.034

[123]

S. Thakur, H. Singh, A. Singh, et al. Thermosensitive injectable hydrogel containing carboplatin loaded nanoparticles: A dual approach for sustained and localized delivery with improved safety and therapeutic efficacy. Journal of Drug Delivery Science and Technology, 2020, 58: 101817. https://doi.org/10.1016/j.jddst.2020.101817

[124]
A.L.Z. Lee, Z.X. Voo, W. Chin, et al. Injectable coacervate hydrogel for delivery of anticancer drug-loaded nanoparticles in vivo. ACS Applied Materials &amp; Interfaces, 2018, 10(16): 13274–13282. https://doi.org/10.1021/acsami.7b14319
[125]

K. Men, W. Liu, L. Li, et al. Delivering instilled hydrophobic drug to the bladder by a cationic nanoparticle and thermo-sensitive hydrogel composite system. Nanoscale, 2012, 4(20): 6425. https://doi.org/10.1039/c2nr31592k

[126]

G. Brachi, J. Ruiz-Ramírez, P. Dogra, et al. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale, 2020, 12(46): 23838−23850. https://doi.org/10.1039/d0nr05053a

[127]

A. Ai, A. Behforouz, A. Ehterami, et al. Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68(18): 1133−1141. https://doi.org/10.1080/00914037.2018.1534114

[128]

B.K. Sun, Z. Siprashvili, P.A. Khavari. Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346(6212): 941−945. https://doi.org/10.1126/science.1253836

[129]

S. Guo, L.A. DiPietro. Factors affecting wound healing. Journal of Dental Research, 2010, 89(3): 219−229. https://doi.org/10.1177/0022034509359125

[130]

X. Wang, D.H. Zhao, Y.T. Li, et al. Collagen hydrogel with multiple antimicrobial mechanisms as anti-bacterial wound dressing. International Journal of Biological Macromolecules, 2023, 232: 123413.

[131]

M.C. Chang, Y.J. Kuo, K.H. Hung, et al. Liposomal dexamethasone–moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. Biomedical Materials, 2020, 15(5): 055022. https://doi.org/10.1088/1748-605x/ab9510

[132]

S. Zamani, M. Salehi, A. Ehterami, et al. Assessing the efficacy of curcumin-loaded alginate hydrogel on skin wound healing: A gene expression analysis. Journal of biomaterials applications, 2024, 38(9): 957−974. https://doi.org/10.1177/08853282241238581

[133]
Y.N. Wang, S.H. Shi, L. Zhang, et al. Imatinib@glycymicelles entrapped in hydrogel: Preparation, characterization, and therapeutic effect on corneal alkali burn in mice. Drug Delivery and Translational Research, 2024. https://doi.org/10.1007/s13346-024-01570-5
[134]

H.F. Hao, P.H. Teng, C. Liu, et al. The correlation between osteoporotic vertebral fracture and paravertebral muscle condition and its clinical treatment. Nano Biomedicine and Engineering, 2024, 16(2): 203−218. https://doi.org/10.26599/nbe.2024.9290051

[135]

N. Celikkin, S. Mastrogiacomo, X.F. Walboomers, et al. Enhancing X-ray attenuation of 3D printed gelatin methacrylate (GelMA) hydrogels utilizing gold nanoparticles for bone tissue engineering applications. Polymers, 2019, 11(2): 367. https://doi.org/10.3390/polym11020367

[136]

R. Kouser, A. Vashist, M. Zafaryab, et al. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Materials Science and Engineering: C, 2018, 84: 168−179. https://doi.org/10.1016/j.msec.2017.11.018

[137]

S. Kianersi, A. Solouk, S. Saber-Samandari, et al. Alginate nanoparticles as ocular drug delivery carriers. Journal of Drug Delivery Science and Technology, 2021, 66: 102889. https://doi.org/10.1016/j.jddst.2021.102889

[138]

M. Hossein Karami, M. Abdouss. Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil drug-loaded chitosan nanoparticles. Inorganic Chemistry Communications, 2024, 164: 112430. https://doi.org/10.1016/j.inoche.2024.112430

[139]

D. George, P.U. Maheswari, K.M.M.S. Begum. Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies. Carbohydrate Polymers, 2020, 236: 116101. https://doi.org/10.1016/j.carbpol.2020.116101

[140]

X. Wang, C.P. Wang, X.Y. Wang, et al. A polydopamine nanoparticle-knotted poly(ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chemistry of Materials, 2017, 29(3): 1370−1376. https://doi.org/10.1021/acs.chemmater.6b05192

[141]

S.Z.M. Madani, M.M. Safaee, M. Gravely, et al. Carbon nanotube–liposome complexes in hydrogels for controlled drug delivery via near-infrared laser stimulation. ACS Applied Nano Materials, 2021, 4(1): 331−342. https://doi.org/10.1021/acsanm.0c02700

[142]

Z. Ahmad, S. Salman, S. Ali Khan, et al. Versatility of hydrogels: From synthetic strategies, classification, and properties to biomedical applications. Gels, 2022, 8(3): 167. https://doi.org/10.3390/gels8030167

[143]

A.N. Leberfinger, D.J. Ravnic, A. Dhawan, et al. Concise review: Bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Translational Medicine, 2017, 6(10): 1940−1948. https://doi.org/10.1002/sctm.17-0148

[144]

D. Cao, X.X. Zhang, M. Akabar, et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 181−191. https://doi.org/10.1080/21691401.2018.1548470

[145]

T.Z. Wang, X.X. Liu, S.Y. Wang, et al. Engineering advanced drug delivery systems for dry eye: A review. Bioengineering, 2022, 10(1): 53. https://doi.org/10.3390/bioengineering10010053

[146]

I.M. Cardoso-Daodu, M.O. Ilomuanya, C.P. Azubuike. Development of curcumin-loaded liposomes in lysine–collagen hydrogel for surgical wound healing. Beni-Suef University Journal of Basic and Applied Sciences, 2022, 11(1): 100. https://doi.org/10.1186/s43088-022-00284-2

[147]

L. Hashem, H. Gad, O. Sammour. An Insight on atopic dermatitis therapy: From conventional to Lipid based nanocarriers. Archives of Pharmaceutical Sciences Ain Shams University, 2020, 4(2): 271−289. https://doi.org/10.21608/aps.2021.53251.1048

[148]

R. Ahmed, M. Tariq, I.S. Ahmad, et al. Poly(lactic- co-glycolic acid) nanoparticles loaded with Callistemon citrinus phenolics exhibited anticancer properties against three breast cancer cell lines. Journal of Food Quality, 2019, 2019: 2638481. https://doi.org/10.1155/2019/2638481

[149]

J.P. Xu, C.H. Tai, T.Y. Chen, et al. An anti-inflammatory electroconductive hydrogel with self-healing property for the treatment of Parkinson’s disease. Chemical Engineering Journal, 2022, 446: 137180. https://doi.org/10.1016/j.cej.2022.137180

[150]
B. Rabha, K.K. Bharadwaj, S. Pati, et al Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update. Polymers, 2021, 13(23): 4114. https://doi.org/10.3390/polym13234114
[151]
J.E. Lee, S.M. Lee, C.B. Kim, et al. 5-fluorouracil-immobilized hyaluronic acid hydrogel arrays on an electrospun bilayer membrane as a drug patch. Bioengineering, 2022, 9(12): 742. https://doi.org/10.3390/bioengineering9120742
[152]

S.A. Shah, M. Sohail, M.U. Minhas, et al. Curcumin-laden hyaluronic acid-co-Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. International Journal of Biological Macromolecules, 2021, 185: 350−368. https://doi.org/10.1016/j.ijbiomac.2021.06.119

[153]

S. Farzaneh, S. Hosseinzadeh, R. Samanipour, et al. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. Journal of Drug Delivery Science and Technology, 2021, 64: 102525. https://doi.org/10.1016/j.jddst.2021.102525

[154]

K. Ullah, M. Sohail, G. Murtaza, et al. Natural and synthetic materials based CMCh/PVA hydrogels for oxaliplatin delivery: Fabrication, characterization, In-Vitro and In-Vivo safety profiling. International Journal of Biological Macromolecules, 2019, 122: 538−548. https://doi.org/10.1016/j.ijbiomac.2018.10.203

[155]

R. Xu, K. Zhang, J.H. Liang, et al. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydrate Polymers, 2021, 261: 117846. https://doi.org/10.1016/j.carbpol.2021.117846

[156]

P. Awasthi, X.Y. An, J.J. Xiang, et al. Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging. Nanoscale, 2020, 12(9): 5678−5684. https://doi.org/10.1039/c9nr10918h

[157]

L. Li, C.P. Wang, Q. Huang, et al. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy. Journal of Materials Chemistry B, 2018, 6(16): 2474−2480. https://doi.org/10.1039/c8tb00091c

[158]

A.K. Jangid, K. Patel, U. Joshi, et al. PEGylated G4 dendrimers as a promising nanocarrier for piperlongumine delivery: Synthesis, characterization, and anticancer activity. European Polymer Journal, 2022, 179: 111547. https://doi.org/10.1016/j.eurpolymj.2022.111547

[159]

E.K. Apartsin, A.E. Grigoryeva, A. Malrin-Fournol, et al. Hydrogels of polycationic acetohydrazone-modified phosphorus dendrimers for biomedical applications: Gelation studies and nucleic acid loading. Pharmaceutics, 2018, 10(3): 120. https://doi.org/10.3390/pharmaceutics10030120

[160]

Y.Q. Wang, X.Y. Dou, H.F. Wang, et al. Dendrimer-based hydrogels with controlled drug delivery property for tissue adhesion. Chinese Journal of Polymer Science, 2021, 39(11): 1421−1430. https://doi.org/10.1007/s10118-021-2584-1

[161]

Z. Kegley, M. Makay, J. Rogers, et al. Polyamidoamine dendrimer-polyethylene glycol hydrogel for solubility enhancement and sustained release of diflunisal. Journal of Sol-Gel Science and Technology, 2022, 104(1): 160−168. https://doi.org/10.1007/s10971-022-05904-y

[162]

A.N. Koppes, K.W. Keating, A.L. McGregor, et al. Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomaterialia, 2016, 39: 34−43. https://doi.org/10.1016/j.actbio.2016.05.014

[163]

S.Q. Wu, B. Duan, A. Lu, et al. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydrate Polymers, 2017, 174: 830−840. https://doi.org/10.1016/j.carbpol.2017.06.101

[164]

L. Van den Broeck, S. Piluso, A.H. Soultan, et al. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering: C, 2019, 98: 1133−1144. https://doi.org/10.1016/j.msec.2019.01.020

[165]

H.Y. Sun, J.J. Tang, Y.C. Mou, et al. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Acta Biomaterialia, 2017, 48: 88−99. https://doi.org/10.1016/j.actbio.2016.10.025

[166]

H.Y. Sun, J. Zhou, Z. Huang, et al. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. International Journal of Nanomedicine, 2017, 12: 3109−3120. https://doi.org/10.2147/ijn.s128030

Nano Biomedicine and Engineering
Cite this article:
Tanveer H, Sarfraz A, Fatima A, et al. Multifunctional Hydrogels for Biomedical Applications. Nano Biomedicine and Engineering, 2024, https://doi.org/10.26599/NBE.2024.9290094

734

Views

105

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 28 March 2024
Revised: 26 May 2024
Accepted: 04 June 2024
Published: 06 September 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return