AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

DNA Nanocarriers for Delivery of sgRNA/Cas9 Ribonucleoprotein

Hanyin Zhu1,2,§Jing Fan1,3,§Changping Yang1,3Jianbing Liu1,2( )Baoquan Ding1,2,3( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China

§4 These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

DNA has been widely employed as a building block for the construction of sophisticated nanostructures with pre-designed sizes and shapes by complementary base pairing. With outstanding programmability, addressability, and biocompatibility, DNA nanostructures have been further developed as nanocarriers for drug delivery in biomedical researches. Noticeably, DNA nanocarriers can be rationally designed for loading and delivering nucleic acid drugs based on their inherent homology. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas9) ribonucleoprotein-based gene editing system has also been efficiently delivered by DNA nanocarriers. In this review, we will summarize the recent progress in the design of versatile DNA nanocarriers, such as rolling circle amplification (RCA)-based DNA nanostructure, branched DNA, and DNA origami, for delivery of single-guide RNA (sgRNA)/Cas9 ribonucleoprotein. Furthermore, the challenges and future opportunities of DNA nanotechnology in the delivery of gene editing system will be discussed.

References

[1]

J.D. Watson, F.H.C. Crick. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 1953, 171(4356): 737−738. https://doi.org/10.1038/171737a0

[2]

F. Crick. Central dogma of molecular biology. Nature, 1970, 227(5258): 561−563. https://doi.org/10.1038/227561a0

[3]

N.C. Seeman. Nucleic acid junctions and lattices. Journal of Theoretical Biology, 1982, 99(2): 237−247. https://doi.org/10.1016/0022-5193(82)90002-9

[4]

M.M. Ali, F. Li, Z.Q. Zhang, et al. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews, 2014, 43(10): 3324. https://doi.org/10.1039/c3cs60439j

[5]

L.H. Eckardt, K. Naumann, W. Matthias Pankau, et al. Chemical copying of connectivity. Nature, 2002, 420(6913): 286. https://doi.org/10.1038/420286a

[6]

P.W.K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082): 297−302. https://doi.org/10.1038/nature04586

[7]

N.R. Kallenbach, R.I. Ma, N.C. Seeman. An immobile nucleic acid junction constructed from oligonucleotides. Nature, 1983, 305(5937): 829−831. https://doi.org/10.1038/305829a0

[8]

Y.G. Li, Y.D. Tseng, S.Y. Kwon, et al. Controlled assembly of dendrimer-like DNA. Nature Materials, 2004, 3(1): 38−42. https://doi.org/10.1038/nmat1045

[9]

E.J. Cheng, Y.Z. Xing, P. Chen, et al. A pH-triggered, fast-responding DNA hydrogel. Angewandte Chemie International Edition, 2009, 48(41): 7660−7663. https://doi.org/10.1002/anie.200902538

[10]

M.R. Jones, N.C. Seeman, C.A. Mirkin. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224): e1260901. https://doi.org/10.1126/science.1260901

[11]

N.C. Seeman, H.F. Sleiman. DNA nanotechnology. Nature Reviews Materials, 2017, 3: 17068. https://doi.org/10.1038/natrevmats.2017.68

[12]

X. Wang, C A.R. handrasekaran, Z.Y. Shen, et al. Paranemic crossover DNA: There and back again. Chemical Reviews, 2019, 119(10): 6273−6289. https://doi.org/10.1021/acs.chemrev.8b00207

[13]

J. Chen, N.C. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991, 350(6319): 631−633. https://doi.org/10.1038/350631a0

[14]

R.P. Goodman, I.A.T. Schaap, C.F. Tardin, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754): 1661−1665. https://doi.org/10.1126/science.1120367

[15]

Y. He, T. Ye, M. Su, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452(7184): 198−201. https://doi.org/10.1038/nature06597

[16]

C.X. Lin, M.Y. Xie, J.J.L. Chen, et al. Rolling-circle amplification of a DNA nanojunction. Angewandte Chemie International Edition, 2006, 45(45): 7537−7539. https://doi.org/10.1002/anie.200602113

[17]

C.X. Lin, X. Wang, Y. Liu, et al. Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure. Journal of the American Chemical Society, 2007, 129(46): 14475−14481. https://doi.org/10.1021/ja0760980

[18]

J.B. Lee, S.M. Peng, D.Y. Yang, et al. A mechanical metamaterial made from a DNA hydrogel. Nature Nanotechnology, 2012, 7(12): 816−820. https://doi.org/10.1038/nnano.2012.211

[19]

C. Yao, H. Tang, W.J. Wu, et al. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. Journal of the American Chemical Society, 2020, 142(7): 3422−3429. https://doi.org/10.1021/jacs.9b11001

[20]

M. Scheffler, A. Dorenbeck, S. Jordan, et al. Self-assembly of trisoligonucleotidyls: The case for nano-acetylene and nano-cyclobutadiene. Angewandte Chemie International Edition, 1999, 38(22): 3311−3315. 3.0.co;2-2">https://doi.org/10.1002/(sici)1521-3773(19991115)38:22<3311::aid-anie3311>3.0.co;2-2

[21]

F.A. Aldaye, H.F. Sleiman. Guest-mediated access to a single DNA nanostructure from a library of multiple assemblies. Journal of the American Chemical Society, 2007, 129(33): 10070−10071. https://doi.org/10.1021/ja073305n

[22]
F.A. Aldaye, H.F. Sleiman, Modular access to structurally switchable 3D discrete DNA assemblies. Journal of the American Chemical Society, 2007, 129(44): 13376–13377. https://doi.org/10.1021/ja075966q
[23]

B.R. Stepp, J.M. Gibbs-Davis, D.L.F. Koh, et al. Cooperative melting in caged dimers of rigid small molecule-DNA hybrids. Journal of the American Chemical Society, 2008, 130(30): 9628−9629. https://doi.org/10.1021/ja801572n

[24]

J. Zimmermann, M.P.J. Cebulla, S. Mönninghoff, et al. Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C3 h linkers. Angewandte Chemie International Edition, 2008, 47(19): 3626−3630. https://doi.org/10.1002/anie.200702682

[25]

H. Yang, C.K. McLaughlin, F.A. Aldaye, et al. Metal–nucleic acid cages. Nature Chemistry, 2009, 1(5): 390−396. https://doi.org/10.1038/nchem.290

[26]

P.K. Lo, P. Karam, F.A. Aldaye, et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nature Chemistry, 2010, 2(4): 319−328. https://doi.org/10.1038/nchem.575

[27]

M. Madsen, K.V. Gothelf. Chemistries for DNA nanotechnology. Chemical Reviews, 2019, 119(10): 6384−6458. https://doi.org/10.1021/acs.chemrev.8b00570

[28]

Y.H. Dong, C. Yao, Y. Zhu, et al. DNA functional materials assembled from branched DNA: Design, synthesis, and applications. Chemical Reviews, 2020, 120(17): 9420−9481. https://doi.org/10.1021/acs.chemrev.0c00294

[29]

E.S. Andersen, M.D. Dong, M.M. Nielsen, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459(7243): 73−76. https://doi.org/10.1038/nature07971

[30]

S.M. Douglas, H. Dietz, T. Liedl, et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 2009, 459(7245): 414−418. https://doi.org/10.1038/nature08016

[31]

D.R. Han, S. Pal, J. Nangreave, et al. DNA origami with complex curvatures in three-dimensional space. Science, 2011, 332(6027): 342−346. https://doi.org/10.1126/science.1202998

[32]

E. Benson, A. Mohammed, J. Gardell, et al. DNA rendering of polyhedral meshes at the nanoscale. Nature, 2015, 523(7561): 441−444. https://doi.org/10.1038/nature14586

[33]

T. Gerling, K.F. Wagenbauer, A.M. Neuner, et al. Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components. Science, 2015, 347(6229): 1446−1452. https://doi.org/10.1126/science.aaa5372

[34]

C.M. Huang, A. Kucinic, J.A. Johnson, et al. Integrated computer-aided engineering and design for DNA assemblies. Nature Materials, 2021, 20(9): 1264−1271. https://doi.org/10.1038/s41563-021-00978-5

[35]

M. Kim, C. Lee, K. Jeon, et al. Harnessing a paper-folding mechanism for reconfigurable DNA origami. Nature, 2023, 619(7968): 78−86. https://doi.org/10.1038/s41586-023-06181-7

[36]

A. Kuzuya, Y. Sakai, T. Yamazaki, et al. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nature Communications, 2011, 2: 449. https://doi.org/10.1038/ncomms1452

[37]

H. Lee, A.K.R. Lytton-Jean, Y. Chen, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, 2012, 7(6): 389−393. https://doi.org/10.1038/nnano.2012.73

[38]
H. Liang, X.B. Zhang, Y.F. Lv, et al Functional DNA-containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Accounts of Chemical Research, 2014, 47(6): 1891–1901. https://doi.org/10.1021/ar500078f
[39]

S. Saha, V. Prakash, S. Halder, et al. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nature Nanotechnology, 2015, 10(7): 645−651. https://doi.org/10.1038/nnano.2015.130

[40]

T.G.W. Edwardson, K.L. Lau, D. Bousmail, et al. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nature Chemistry, 2016, 8(2): 162−170. https://doi.org/10.1038/nchem.2420

[41]

G.L.Ke, M.H. Liu, S.X. Jiang, et al. Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold. Angewandte Chemie International Edition, 2016, 55(26): 7483−7486. https://doi.org/10.1002/anie.201603183

[42]

P.C. Nickels, B. Wünsch, P. Holzmeister, et al. Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp. Science, 2016, 354(6310): 305−307. https://doi.org/10.1126/science.aah5974

[43]

Q.B. Mou, Y. Ma, G.F. Pan, et al. DNA Trojan horses: Self-assembled floxuridine-containing DNA polyhedra for cancer therapy. Angewandte Chemie International Edition, 2017, 56(41): 12528−12532. https://doi.org/10.1002/anie.201706301

[44]

A.J. Thubagere, W. Li, R.F. Johnson, et al. A cargo-sorting DNA robot. Science, 2017, 357(6356): eaan6558. https://doi.org/10.1126/science.aan6558

[45]

E. Kopperger, J. List, S. Madhira, et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science, 2018, 359(6373): 296−301. https://doi.org/10.1126/science.aao4284

[46]

X.G. Liu, F. Zhang, X.X. Jing, et al. Complex silica composite nanomaterials templated with DNA origami. Nature, 2018, 559(7715): 593−598. https://doi.org/10.1038/s41586-018-0332-7

[47]

Q.Q. Hu, H. Li, L.H. Wang, et al. DNA nanotechnology-enabled drug delivery systems. Chemical Reviews, 2019, 119(10): 6459−6506. https://doi.org/10.1021/acs.chemrev.7b00663

[48]

J. Zhang, Y.Y. Guo, F. Ding, et al. A camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angewandte Chemie International Edition, 2019, 58(39): 13794−13798. https://doi.org/10.1002/anie.201907380

[49]

Y. Liu, J. Cheng, S.S. Fan, et al. Modular reconfigurable DNA origami: From two-dimensional to three-dimensional structures. Angewandte Chemie International Edition, 2020, 59(51): 23277−23282. https://doi.org/10.1002/anie.202010433

[50]

P.S. Kwon, S.K. Ren, S.J. Kwon, et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nature Chemistry, 2020, 12(1): 26−35. https://doi.org/10.1038/s41557-019-0369-8

[51]

H. Bila, K. Paloja, V. Caroprese, et al. Multivalent pattern recognition through control of nano-spacing in low-valency super-selective materials. Journal of the American Chemical Society, 2022, 144(47): 21576−21586. https://doi.org/10.1021/jacs.2c08529

[52]

R. Ibusuki, T. Morishita, A. Furuta, et al. Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science, 2022, 375(6585): 1159−1164. https://doi.org/10.1126/science.abj5170

[53]

H. Lv, N.L. Xie, M.Q. Li, et al. DNA-based programmable gate arrays for general-purpose DNA computing. Nature, 2023, 622(7982): 292−300. https://doi.org/10.1038/s41586-023-06484-9

[54]
J. Huang, A. Jaekel, J. van den Boom, et al. A modular DNA origami nanocompartment for engineering a cell-free, protein unfolding and degradation pathway. Nature Nanotechnology, 2024. https://doi.org/10.1038/s41565-024-01738-7
[55]

J.L. Jiang, X.Y. Cui, Y.X. Huang, et al. Advances and prospects in integrated nano-oncology. Nano Biomedicine and Engineering, 2024, 16(2): 152−187. https://doi.org/10.26599/nbe.2024.9290060

[56]
Y.R. Yu, D. Chen, Y.B. Yang, et al. Recent progress in electrochemical biosensors based on DNA-functionalized nanomaterials. Nano Biomedicine and Engineering, 2024. https://doi.org/10.26599/nbe.2024.9290071
[57]

E. Deltcheva, K. Chylinski, C.M. Sharma, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602−607. https://doi.org/10.1038/nature09886

[58]

G. Gasiunas, R. Barrangou, P. Horvath, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579−E2586. https://doi.org/10.1073/pnas.1208507109

[59]

M. Jinek, K. Chylinski, I. Fonfara, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816−821. https://doi.org/10.1126/science.1225829

[60]

B. Wiedenheft, S.H. Sternberg, J.A. Doudna. RNA-guided genetic silencing systems in bacteria and Archaea. Nature, 2012, 482(7385): 331−338. https://doi.org/10.1038/nature10886

[61]

L. Cong, F.A. Ran, D. Cox, et al. Multiplex genome engineering using CRISPR/cas systems. Science, 2013, 339(6121): 819−823. https://doi.org/10.1126/science.1231143

[62]

P. Mali, L.H. Yang, K.M. Esvelt, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823−826. https://doi.org/10.1126/science.1232033

[63]

J.A. Doudna, E. Charpentier. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): e1258096. https://doi.org/10.1126/science.1258096

[64]

M. Jinek, F.G. Jiang, D.W. Taylor, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): e1247997. https://doi.org/10.1126/science.1247997

[65]

D.B.T. Cox, R.J. Platt, F. Zhang. Therapeutic genome editing: Prospects and challenges. Nature Medicine, 2015, 21(2): 121−131. https://doi.org/10.1038/nm.3793

[66]

G.J. Knott, J.A. Doudna. CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361(6405): 866−869. https://doi.org/10.1126/science.aat5011

[67]

X. Gao, Y. Tao, V. Lamas, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 2018, 553(7687): 217−221. https://doi.org/10.1038/nature25164

[68]

M. Wang, Z.A. Glass, Q. Xu. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Therapy, 2017, 24(3): 144−150. https://doi.org/10.1038/gt.2016.72

[69]

S.K. Alsaiari, S. Patil, M. Alyami, et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society, 2018, 140(1): 143−146. https://doi.org/10.1021/jacs.7b11754

[70]

L. Li, S. Hu, X.Y. Chen. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 2018, 171: 207−218. https://doi.org/10.1016/j.biomaterials.2018.04.031

[71]

W.H. Zhou, H.D. Cui, L.M. Ying, et al. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angewandte Chemie International Edition, 2018, 57(32): 10268−10272. https://doi.org/10.1002/anie.201806941

[72]

G.J. Chen, A.A. Abdeen, Y.Y. Wang, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nature Nanotechnology, 2019, 14(10): 974−980. https://doi.org/10.1038/s41565-019-0539-2

[73]

Y.C. Pan, J.J. Yang, X.W. Luan, et al. Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Science Advances, 2019, 5(4): eaav7199. https://doi.org/10.1126/sciadv.aav7199

[74]

X.T. Yang, Q. Tang, Y. Jiang, et al. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. Journal of the American Chemical Society, 2019, 141(9): 3782−3786. https://doi.org/10.1021/jacs.8b11996

[75]

Q. Cheng, T. Wei, L. Farbiak, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nature Nanotechnology, 2020, 15(4): 313−320. https://doi.org/10.1038/s41565-020-0669-6

[76]

J.L. Zhuang, J.Z. Tan, C.L. Wu, et al. Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. Nucleic Acids Research, 2020, 48(16): 8870−8882. https://doi.org/10.1093/nar/gkaa683

[77]

W.Q. Cai, T.L. Luo, L.Q. Mao, et al. Spatiotemporal delivery of CRISPR/Cas9 genome editing machinery using stimuli-responsive vehicles. Angewandte Chemie International Edition, 2021, 60(16): 8596−8606. https://doi.org/10.1002/anie.202005644

[78]

T. Wan, J.F. Zhong, Q. Pan, et al. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Science Advances, 2022, 8(37): eabp9435. https://doi.org/10.1126/sciadv.abp9435

[79]

Y. Zou, X.H. Sun, Q.S. Yang, et al. Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8(16): eabm8011. https://doi.org/10.1126/sciadv.abm8011

[80]

G.Z. Zhu, R. Hu, Z.L. Zhao, et al. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. Journal of the American Chemical Society, 2013, 135(44): 16438−16445. https://doi.org/10.1021/ja406115e

[81]

W.J. Sun, J.Q. Wang, Q.Y. Hu, et al. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6(21): eaba2983. https://doi.org/10.1126/sciadv.aba2983

[82]

W.J. Sun, W.Y. Ji, J.M. Hall, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angewandte Chemie International Edition, 2015, 54(41): 12029−12033. https://doi.org/10.1002/anie.201506030

[83]

J.J. Shi, X. Yang, Y.N. Li, et al. MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing. Biomaterials, 2020, 256: 120221. https://doi.org/10.1016/j.biomaterials.2020.120221

[84]

F. Li, N.C. Song, Y.H. Dong, et al. A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angewandte Chemie International Edition, 2022, 61(9): 2116569. https://doi.org/10.1002/anie.202116569

[85]

J.B. Liu, R.Y. Wang, D.J. Ma, et al. Efficient construction of stable gene nanoparticles through polymerase chain reaction with flexible branched primers for gene delivery. Chemical Communications, 2015, 51(44): 9208−9211. https://doi.org/10.1039/c5cc01788b

[86]

F. Ding, Q.B. Mou, Y. Ma, et al. A crosslinked nucleic acid nanogel for effective siRNA delivery and antitumor therapy. Angewandte Chemie International Edition, 2018, 57(12): 3064−3068. https://doi.org/10.1002/anie.201711242

[87]

F. Ding, X.G. Huang, X.H. Gao, et al. A non-cationic nucleic acid nanogel for the delivery of the CRISPR/Cas9 gene editing tool. Nanoscale, 2019, 11(37): 17211−17215. https://doi.org/10.1039/c9nr05233j

[88]
J.B. Liu, T.T. Wu, X.H. Lu, et al. A self-assembled platform based on branched DNA for sgRNA/Cas9/antisense delivery. Journal of the American Chemical Society, 201 9 , 141(48): 19032–19037. https://doi.org/10.1021/jacs.9b09043
[89]

N.C. Song, Y.W. Chu, S. Li, et al. Cascade dynamic assembly/disassembly of DNA nanoframework enabling the controlled delivery of CRISPR-Cas9 system. Science Advances, 2023, 9(35): eadi3602. https://doi.org/10.1126/sciadv.adi3602

[90]

V.J. Schüller, S. Heidegger, N. Sandholzer, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano, 2011, 5(12): 9696−9702. https://doi.org/10.1021/nn203161y

[91]

S.M. Douglas, I. Bachelet, G.M. Church. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335(6070): 831−834. https://doi.org/10.1126/science.1214081

[92]

Q. Jiang, C. Song, J. Nangreave, et al. DNA origami as a carrier for circumvention of drug resistance. Journal of the American Chemical Society, 2012, 134(32): 13396−13403. https://doi.org/10.1021/ja304263n

[93]

Y.X. Zhao, A. Shaw, X.H. Zeng, et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano, 2012, 6(10): 8684−8691. https://doi.org/10.1021/nn3022662

[94]

M.A. Rahman, P.F. Wang, Z.X. Zhao, et al. Systemic delivery of Bc12-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angewandte Chemie International Edition, 2017, 56(50): 16023−16027. https://doi.org/10.1002/anie.201709485

[95]
S.P. Li, Q. Jiang, S.L. Liu, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36(3): 258–264. https://doi.org/10.1038/nbt.4071
[96]

R. Veneziano, T.J. Moyer, M.B. Stone, et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nature Nanotechnology, 2020, 15(8): 716−723. https://doi.org/10.1038/s41565-020-0719-0

[97]

S.L. Liu, Q. Jiang, X. Zhao, et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials, 2021, 20(3): 421−430. https://doi.org/10.1038/s41563-020-0793-6

[98]

C. Sigl, E.M. Willner, W. Engelen, et al. Programmable icosahedral shell system for virus trapping. Nature Materials, 2021, 20(9): 1281−1289. https://doi.org/10.1038/s41563-021-01020-4

[99]
X.H. Wu, C.P. Yang, H. Wang, et al. Genetically encoded DNA origami for gene therapy in vivo. Journal of the American Chemical Society, 2023, 145(16): 9343–9353. https://doi.org/10.1021/jacs.3c02756
[100]

J. Yin, S.Y. Wang, J.H. Wang, et al. An intelligent DNA nanodevice for precision thrombolysis. Nature Materials, 2024, 23(6): 854−862. https://doi.org/10.1038/s41563-024-01826-y

[101]

Y.C. Zeng, O.J. Young, C.M. Wintersinger, et al. Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination. Nature Nanotechnology, 2024, 19(7): 1055−1065. https://doi.org/10.1038/s41565-024-01615-3

[102]
W.T. Tang, T. Tong, H. Wang, et al. A DNA origami-based gene editing system for efficient gene therapy in vivo. Angewandte Chemie International Edition, 2023, 62(51): 2315093. https://doi.org/10.1002/anie.202315093
[103]

Z.Q. Xu, Y.X. Dong, N.N. Ma, et al. Confinement in dual-chain-locked DNA origami nanocages programs marker-responsive delivery of CRISPR/Cas9 ribonucleoproteins. Journal of the American Chemical Society, 2023, 145(49): 26557−26568. https://doi.org/10.1021/jacs.3c04074

Nano Biomedicine and Engineering
Pages 331-344
Cite this article:
Zhu H, Fan J, Yang C, et al. DNA Nanocarriers for Delivery of sgRNA/Cas9 Ribonucleoprotein. Nano Biomedicine and Engineering, 2024, 16(3): 331-344. https://doi.org/10.26599/NBE.2024.9290096

499

Views

180

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 22 August 2024
Revised: 11 September 2024
Accepted: 13 September 2024
Published: 29 September 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return