PDF (1.6 MB)
Collect
Submit Manuscript
Review | Open Access

Plant-derived Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia and Magnetic Resonance Imaging Applications

Mohamed Abdelmonem1,2Romesa Soomro1Norazalina Saad3Mohamed Ahmed Ibrahim2,4Kim Wei Chan4Emmellie Laura Albert5Emma Ziezie Tarmizie6Che Azurahanim Che Abdullah1()
Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Nanomaterials Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Centre for Foundation Studies in Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The biomedical applications of iron oxide nanoparticles (IONPs) synthesized using environmentally friendly processes are extremely promising. Using eco-friendly and nontoxic methods is a safer alternative to conventional chemical synthesis, which generates toxic byproducts. It allows for greater control over particle size and morphology. The resulting unique magnetic and optical properties of IONPs enable their use in biomedical applications such as magnetic hyperthermia (MH) and magnetic resonance imaging (MRI). This review aimed to summarize recent advances in the synthesis, characterization, and biosafety of IONPs for use in MH and MRI. It also aimed to highlight the significance of eco-friendly synthesis techniques for producing IONPs with the desired magnetic and physicochemical properties. Overall, this review elucidated the most efficient methods for utilizing iron oxide while considering biocompatibility.

References

[1]

N.B. Turan, H.S. Erkan, G.O. Engin, et al. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—a review. Process Safety and Environmental Protection, 2019, 130: 238−249. https://doi.org/10.1016/j.psep.2019.08.014

[2]

S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, et al. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. Journal of Photochemistry and Photobiology B: Biology, 2019, 192: 74−82. https://doi.org/10.1016/j.jphotobiol.2018.12.025

[3]

T.A. Saleh, G. Fadillah, O.A. Saputra. Nanoparticles as components of electrochemical sensing platforms for the detection of petroleum pollutants: A review. TrAC Trends in Analytical Chemistry, 2019, 118: 194−206. https://doi.org/10.1016/j.trac.2019.05.045

[4]

M. Hussain, N.I. Raja, M. Iqbal, et al. Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43(3): 1381−1392. https://doi.org/10.1007/s40995-017-0431-6

[5]

A. Arya, V. Mishra, T.S. Chundawat. Green synthesis of silver nanoparticles from green algae ( Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chemical Data Collections, 2019, 20: 100190. https://doi.org/10.1016/j.cdc.2019.100190

[6]
N. Pantidos. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology, 2014, 5(5): 1000233. https://doi.org/10.4172/2157-7439.1000233
[7]

S.H. Chen, R. Yuan, Y.Q. Chai, et al. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchimica Acta, 2013, 180(1): 15−32. https://doi.org/10.1007/s00604-012-0904-4

[8]
A. Rastar, M.E. Yazdanshenas, A. Rashidi, et al. Theoretical Review of Optical Properties of Nanoparticles. Journal of Engineered Fibers and Fabrics, 2013, 8(2): 155892501300800220. https://doi.org/10.1177/155892501300800211
[9]

E.A. Campos, D.V.B.S. Pinto, J.I.S. de Oliveira, et al. Synthesis, characterization and applications of iron oxide nanoparticles - A short review. Journal of Aerospace Technology and Management, 2015, 7(3): jul./Sep.2015. https://doi.org/10.5028/jatm.v7i3.471

[10]

S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27): 12871−12934. https://doi.org/10.1039/c8nr02278j

[11]

S.K. Srikar, D.D. Giri, D.B. Pal, et al. Green synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry, 2016, 6(1): 34−56. https://doi.org/10.4236/gsc.2016.61004

[12]
M. Abdelmonem, E.L. Albert, A. Norman, et al. Surface functionalization of 2D MOs for enhanced biocompatibility and biomedical applications. In: Emerging Applications of Novel Nanoparticles. Cham: Springer, 2024: 175–198. https://doi.org/10.1007/978-3-031-57843-4_7
[13]
S.P. Patil, R.Y. Chaudhari, M.S. Nemade. Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. Talanta Open, 2022, 5: 100083. https://doi.org/10.1016/j.talo.2022.100083
[14]
M. Abdelmonem, E.L. Albert, M.A. Alhadad, et al. Plant-polyphenol-mediated synthesis of magnetic biocompatible iron oxide nanoparticles for diagnostic imaging and management of neurodegenerative diseases. Precision Nanomedicine, 202 4 , 7(1): 1233–1251. https://doi.org/10.33218/001c.92424
[15]

A. Rajan, N.K. Sahu. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. Journal of Nanoparticle Research, 2020, 22: 319. https://doi.org/10.1007/s11051-020-05045-9

[16]

A.G. Roca, L. Gutiérrez, H. Gavilán, et al. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced Drug Delivery Reviews, 2019, 138: 68−104. https://doi.org/10.1016/j.addr.2018.12.008

[17]

Y. Sun, S.K. Gray, S. Peng. Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles. Physical Chemistry Chemical Physics, 2011, 13(25): 11814−11826. https://doi.org/10.1039/c1cp20265k

[18]

M. Yusefi, K. Shameli, R.R. Ali, et al. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using punica granatum fruit peel extract. Journal of Molecular Structure, 2020, 1204: 127539. https://doi.org/10.1016/j.molstruc.2019.127539

[19]

W.S. Mohamed, N.M.A. Hadia, B. Al bakheet, et al. Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1- x Cu x Fe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sciences, 2022, 125: 106841. https://doi.org/10.1016/j.solidstatesciences.2022.106841

[20]

M. Jamzad, M. Kamari Bidkorpeh. Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of Nanostructure in Chemistry, 2020, 10(3): 193−201. https://doi.org/10.1007/s40097-020-00341-1

[21]

S. Dutta, S. Parida, C. Maiti, et al. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. Journal of Colloid and Interface Science, 2016, 467: 70−80. https://doi.org/10.1016/j.jcis.2016.01.008

[22]

A. Zengin, U. Tamer, T. Caykara. Synthesis of superparamagnetic and thermoresponsive hybrid nanoparticles via surface-mediated RAFT polymerization of di(ethylene glycol) ethyl ether acrylate and (oligoethylene glycol) methyl ether acrylate. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(16): 3420−3428. https://doi.org/10.1002/pola.26739

[23]
M. Razavi, E. Salahinejad, M. Fahmy, et al. Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Green Processes for Nanotechnology. Cham: Springer International Publishing, 2015: 207–235. https://doi.org/10.1007/978-3-319-15461-9_7
[24]
M. Abdelmonem, E.L. Albert, N.K.R. Zainon, et al. Biosynthesis of iron oxide nanoparticles (IONPs): Toxicity evaluation and applications for magnetic resonance imaging and magnetic hyperthermia. In: Lecture Notes in Nanoscale Science and Technology. S. Anil Bansal, V. Khanna, N. Balakrishnan, et al. eds. Cham: Springer Nature Switzerland, 2024: 229–249. https://doi.org/10.1007/978-3-031-57843-4_9
[25]

N. Abid, A.M. Khan, S. Shujait, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 2022, 300: 102597. https://doi.org/10.1016/j.cis.2021.102597

[26]
A. Demirbas, T. Karaytuğ, N. Arabacі, et al. Synthesis of metallic and metal oxide nanomaterials. In: Green Synthesis of Nanomaterials for Bioenergy Applications. N. Srivastava, M. Srivastava, P.K. Mishra, et al. eds. John Wiley & Sons Ltd., 2020: 99–123. https://doi.org/10.1002/9781119576785.ch4
[27]

S. Anu Mary Ealia, M.P. Saravanakumar. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 2017, 263: 032019. https://doi.org/10.1088/1757-899x/263/3/032019

[28]

S.X. Liu, B. Yu, S. Wang, et al. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Advances in Colloid and Interface Science, 2020, 281: 102165. https://doi.org/10.1016/j.cis.2020.102165

[29]

M.C. Sportelli, M. Izzi, A. Volpe, et al. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics, 2018, 7(3): 67. https://doi.org/10.3390/antibiotics7030067

[30]

S. Shahidi, B. Moazzenchi, M. Ghoranneviss. A review-application of physical vapor deposition (PVD) and related methods in the textile industry. The European Physical Journal Applied Physics, 2015, 71(3): 31302. https://doi.org/10.1051/epjap/2015140439

[31]
I. Sayago, E. Hontañón, M. Aleixandre. Preparation of tin oxide nanostructures by chemical vapor deposition. In: Tin Oxide Materials. Amsterdam: Elsevier, 2020: 247–280. https://doi.org/10.1016/b978-0-12-815924-8.00009-8
[32]

P.G. Jamkhande, N.W. Ghule, A.H. Bamer, et al. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 2019, 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174

[33]
H.Y. Li, B.S. Yang, Model evaluation of particle breakage facilitated process intensification for Mixed-Suspension-Mixed-Product-Removal (MSMPR) crystallization. Chemical Engineering Science, 2019, 207: 1175–1186. https://doi.org/10.1016/j.ces.2019.07.030
[34]

N. Baig, I. Kammakakam, W. Falath. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2(6): 1821−1871. https://doi.org/10.1039/d0ma00807a

[35]

O.P. Bolade, A.B. Williams, N.U. Benson. Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100279. https://doi.org/10.1016/j.enmm.2019.100279

[36]

M. Herlekar, S. Barve, R. Kumar. Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014, 2014: 140614. https://doi.org/10.1155/2014/140614

[37]
Jayakumari. Phytochemicals and pharmaceutical: Overview. In: Advances in Pharmaceutical Biotechnology. Singapore: Springer Singapore, 2020: 163–173. https://doi.org/10.1007/978-981-15-2195-9_14
[38]
M. Nasrollahzadeh, M. Atarod, M. Sajjadi, et al. Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. In: Interface Science and Technology. Amsterdam: Elsevier, 2019: 199–322. https://doi.org/10.1016/b978-0-12-813586-0.00006-7
[39]

L.L. Huang, X.L. Weng, Z.L. Chen, et al. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 295−301. https://doi.org/10.1016/j.saa.2014.04.037

[40]

P. Somchaidee, K. Tedsree. Green synthesis of high dispersion and narrow size distribution of zero-valent iron nanoparticles using guava leaf ( Psidium guajava L) extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9(3): 035006. https://doi.org/10.1088/2043-6254/aad5d7

[41]

S. Lakshminarayanan, M.F. Shereen, K.L. Niraimathi, et al. Author Correction: One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports, 2021, 11: 17707. https://doi.org/10.1038/s41598-021-87960-y

[42]

C. Sudhakar, M. Poonkothai, T. Selvankmuar, et al. Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. Inorganic Chemistry Communications, 2021, 133: 108977. https://doi.org/10.1016/j.inoche.2021.108977

[43]

N. Mohamed, O.E.A. Hessen, H.S. Mohammed. Thermal stability, paramagnetic properties, morphology and antioxidant activity of iron oxide nanoparticles synthesized by chemical and green methods. Inorganic Chemistry Communications, 2021, 128: 108572. https://doi.org/10.1016/j.inoche.2021.108572

[44]

M.R. Parsaeian, A.M. Haji Shabani, S. Dadfarnia, et al. Evaluating the biological activities of functionalized magnetic iron oxide nanoparticles with different concentrations of aqueous pine leaves extract. Journal of the Indian Chemical Society, 2022, 99(10): 100707. https://doi.org/10.1016/j.jics.2022.100707

[45]

M. Khatami, H.Q. Alijani, B. Fakheri, et al. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. Journal of Cleaner Production, 2019, 208: 1171−1177. https://doi.org/10.1016/j.jclepro.2018.10.182

[46]

Y.W. Getahun, J. Gardea-Torresdey, F.S. Manciu, et al. A. Green synthesized superparamagnetic iron oxide nanoparticles for water treatment with alternative recyclability. Journal of Molecular Liquids, 2022, 356: 118983. https://doi.org/10.1016/j.molliq.2022.118983

[47]

D. Patiño-Ruiz, L. Sánchez-Botero, L. Tejeda-Benitez, et al. Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: Nanotoxicological considerations for potential environmental applications. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100377. https://doi.org/10.1016/j.enmm.2020.100377

[48]

E.A. Moacă, V. Socoliuc, D. Stoian, et al. Synthesis and characterization of bioactive magnetic nanoparticles from the perspective of hyperthermia applications. Magnetochemistry, 2022, 8(11): 145. https://doi.org/10.3390/magnetochemistry8110145

[49]

M. Yusefi, K. Shameli, O. Su Yee, et al. Green synthesis of Fe3O4 nanoparticles stabilized by a garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. International Journal of Nanomedicine, 2021, 16: 2515−2532. https://doi.org/10.2147/ijn.s284134

[50]

V.C. Karade, S.B. Parit, V.V. Dawkar, et al. A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s in vitro hyperthermia application. Heliyon, 2019, 5(7): e02044. https://doi.org/10.1016/j.heliyon.2019.e02044

[51]

P. Kharey, S.B. Dutta, M. Manikandan, et al. Green synthesis of near-infrared absorbing eugenate capped iron oxide nanoparticles for photothermal application. Nanotechnology, 2020, 31(9): 095705. https://doi.org/10.1088/1361-6528/ab56b6

[52]

M. Yusefi, K. Shameli, Z. Hedayatnasab, et al. Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment. Research on Chemical Intermediates, 2021, 47(5): 1789−1808. https://doi.org/10.1007/s11164-020-04388-1

[53]

P.C. Nagajyothi, M. Pandurangan, D.H. Kim, et al. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. Journal of Cluster Science, 2017, 28(1): 245−257. https://doi.org/10.1007/s10876-016-1082-z

[54]

D. Aksu Demirezen, Y.Ş. Yıldız, D. Demirezen Yılmaz. Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis. Environmental Nanotechnology, Monitoring & Management, 2019, 11: 100219. https://doi.org/10.1016/j.enmm.2019.100219

[55]
A. Majid, F. Naz, H. Ali Jamro, et al. Facile green synthesis of iron oxide nanoparticles using phoenix dactylifera L. seed extract and their antibacterial applications. Journal of Pharmaceutical Research International, 2021: 21–29. https://doi.org/10.9734/jpri/2021/v33i26b31478
[56]

V.G. Viju Kumar, A.A. Prem. Green synthesis and characterization of iron oxide nanoparticles using phyllanthus niruri extract. Oriental Journal of Chemistry, 2018, 34(5): 2583−2589. https://doi.org/10.13005/ojc/340547

[57]

M.Y. Rather, S. Sundarapandian. Magnetic iron oxide nanorod synthesis by Wedelia urticifolia (Blume) DC. leaf extract for methylene blue dye degradation. Applied Nanoscience, 2020, 10(7): 2219−2227. https://doi.org/10.1007/s13204-020-01366-2

[58]

A. Bouafia, S.E. Laouini. Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Materials Letters, 2020, 265: 127364. https://doi.org/10.1016/j.matlet.2020.127364

[59]

A.V. Ramesh, D. Rama Devi, S. Mohan Botsa, et al. Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. Journal of Asian Ceramic Societies, 2018, 6(2): 145−155. https://doi.org/10.1080/21870764.2018.1459335

[60]

S. Kanagasubbulakshmi, K. Kadirvelu. Green synthesis of Iron oxide nanoparticles using Lagenaria siceraria and evaluation of its Antimicrobial activity. Defence Life Science Journal, 2017, 2(4): 422. https://doi.org/10.14429/dlsj.2.12277

[61]

B. Kumar, K. Smita, L. Cumbal, et al. Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics, 2016, 179: 310−315. https://doi.org/10.1016/j.matchemphys.2016.05.045

[62]

I.P. Sari, Y. Yulizar. Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract. IOP Conference Series: Materials Science and Engineering, 2017, 191: 012014. https://doi.org/10.1088/1757-899x/191/1/012014

[63]

A.V. Ramesh, B. Lavakusa, B.S. Mohan, et al. A facile plant mediated synthesis of magnetite nanoparticles using aqueous leaf extract of ficus hispida L. for adsorption of organic dye. IOSR Journal of Applied Chemistry, 2017, 10(7): 35−43. https://doi.org/10.9790/5736-1007013543

[64]

R. Rahmani, M. Gharanfoli, M. Gholamin, et al. Green synthesis of 99mTc-labeled-Fe3O4 nanoparticles using Quince seeds extract and evaluation of their cytotoxicity and biodistribution in rats. Journal of Molecular Structure, 2019, 1196: 394−402. https://doi.org/10.1016/j.molstruc.2019.06.076

[65]

W.L. Cai, X.L. Weng, Z.L. Chen. Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4. Environmental Pollution, 2019, 247: 839−846. https://doi.org/10.1016/j.envpol.2019.01.108

[66]
H. Veisi, L. Mohammadi, S. Hemmati, et al. In situ immobilized silver nanoparticles on Rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: An efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega, 2019, 4(9): 13991–14003. https://doi.org/10.1021/acsomega.9b01720
[67]

M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, et al. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chemical Reviews, 2012, 112(4): 2323−2338. https://doi.org/10.1021/cr2002596

[68]

N. Asare, C. Instanes, W.J. Sandberg, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 2012, 291(1-3): 65−72. https://doi.org/10.1016/j.tox.2011.10.022

[69]

M.J.H. Dowlath, S.A. Musthafa, S.B. Mohamed Khalith, et al. Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environmental Research, 2021, 201: 111585. https://doi.org/10.1016/j.envres.2021.111585

[70]

M. Nikzamir, A. Akbarzadeh, Y. Panahi. An overview on nanoparticles used in biomedicine and their cytotoxicity. Journal of Drug Delivery Science and Technology, 2021, 61: 102316. https://doi.org/10.1016/j.jddst.2020.102316

[71]

R. Sheel, P. Kumari, P.K. Panda, et al. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated invivo biocompatibility of P.niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environmental Pollution, 2020, 267: 115482. https://doi.org/10.1016/j.envpol.2020.115482

[72]

G.C. Hermosa, C.S. Liao, H.S. Wu, et al. Green synthesis of magnetic ferrites (Fe3O4, CoFe2O4, and NiFe2O4) stabilized by aloe vera extract for cancer hyperthermia activities. IEEE Transactions on Magnetics, 2022, 58(8): 5400307. https://doi.org/10.1109/tmag.2022.3158835

[73]
A.L. Ramirez-Nuñez, L.F. Jimenez-Garcia, G.F. Goya, et al. In vitro magnetic hyperthermia using polyphenol-coated Fe3O4@γFe2O3nanoparticles from Cinnamomun verum and Vanilla planifolia: The concert of green synthesis and therapeutic possibilities. Nanotechnology, 2018, 29(7): 074001. https://doi.org/10.1088/1361-6528/aaa2c1
[74]

J. Sandhya, S. Kalaiselvam. Biogenic synthesis of magnetic iron oxide nanoparticles using inedible borassus flabellifer seed coat: Characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Materials Research Express, 2020, 7(1): 015045. https://doi.org/10.1088/2053-1591/ab6642

[75]

E.A. Moacă, C.G. Watz, D. Flondor Ionescu, et al. Biosynthesis of iron oxide nanoparticles: Physico-chemical characterization and their in vitro cytotoxicity on healthy and tumorigenic cell lines. Nanomaterials, 2022, 12(12): 2012. https://doi.org/10.3390/nano12122012

[76]

H. Al-Karagoly, A. Rhyaf, H.L. Naji, et al. Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processing and Synthesis, 2022, 11(1): 254−265. https://doi.org/10.1515/gps-2022-0026

[77]

X. Peng, X. Qian, H. Mao, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 2008, 3(3): 311−321. https://doi.org/10.2147/ijn.s2824

[78]

X.H. Sun, A. Tan, B.J. Boyd. Magnetically-activated lipid nanocarriers in biomedical applications: A review of current status and perspective. WIREs Nanomedicine and Nanobiotechnology, 2023, 15(3): e1863. https://doi.org/10.1002/wnan.1863

[79]
M.L. García Martín, P. López Larrubia. Preclinical MRI, vol. 1718. New York, NY: Springer New York, 2018. https://doi.org/10.1007/978-1-4939-7531-0
[80]
D.H. Liu, W.T. Yang, B.B. Zhang. Magnetic resonance imaging and its molecular probes in evaluating the response to tumor treatment. Nano Biomedicine and Engineering, 2024. https://doi.org/10.26599/nbe.2024.9290073
[81]

M. Legacz, K. Roepke, M. Giersig, et al. Contrast agents and cell labeling strategies for in vivo imaging. Advances in Nanoparticles, 2014, 3(2): 41−53. https://doi.org/10.4236/anp.2014.32007

[82]

Y.K. Peng, S.C.E. Tsang, P.T. Chou. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging. Materials Today, 2016, 19(6): 336−348. https://doi.org/10.1016/j.mattod.2015.11.006

[83]

J. Lin, X.H. Ma, A.R. Li, et al. Multiple valence states of Fe boosting SERS activity of Fe3O4 nanoparticles and enabling effective SERS-MRI bimodal cancer imaging. Fundamental Research, 2024, 4(4): 858−867. https://doi.org/10.1016/j.fmre.2022.04.018

[84]

S.J. Chen, L. An, S.P. Yang. Low-molecular-weight Fe(III) complexes for MRI contrast agents. Molecules, 2022, 27(14): 4573. https://doi.org/10.3390/molecules27144573

[85]

Contents: (Adv. Mater. 11/2017). Advanced Materials, 2017, 29(11): 1770074. https://doi.org/10.1002/adma.201770074

[86]

D.J. Todd, J. Kay. Gadolinium-induced fibrosis. Annual Review of Medicine, 2016, 67: 273−291. https://doi.org/10.1146/annurev-med-063014-124936

[87]

H. Malikova, M. Holesta. Gadolinium contrast agents - are they really safe. The Journal of Vascular Access, 2017, 18(2_suppl): S1−S7. https://doi.org/10.5301/jva.5000713

[88]

M. Rogosnitzky, S. Branch. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. BioMetals, 2016, 29(3): 365−376. https://doi.org/10.1007/s10534-016-9931-7

[89]

J. Ramalho, R.C. Semelka, M. Ramalho, et al. Gadolinium-based contrast agent accumulation and toxicity: An update. American Journal of Neuroradiology, 2016, 37(7): 1192−1198. https://doi.org/10.3174/ajnr.a4615

[90]

T. Kanda, K. Ishii, H. Kawaguchi, et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology, 2014, 270(3): 834−841. https://doi.org/10.1148/radiol.13131669

[91]

H. Wei, O.T. Bruns, M.G. Kaul, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2325−2330. https://doi.org/10.1073/pnas.1620145114

[92]

S. Taheri, N.J. Shah, G.A. Rosenberg. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging. Magnetic Resonance Imaging, 2016, 34(7): 1034−1040. https://doi.org/10.1016/j.mri.2016.04.014

[93]

W.S. Xie, Z.H. Guo, F. Gao, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12): 3284−3307. https://doi.org/10.7150/thno.25220

[94]

D.S. Ling, M.J. Hackett, T. Hyeon. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 2014, 9(4): 457−477. https://doi.org/10.1016/j.nantod.2014.06.005

[95]

N. Lee, D. Yoo, D.S. Ling, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chemical Reviews, 2015, 115(19): 10637−10689. https://doi.org/10.1021/acs.chemrev.5b00112

[96]

D.S. Ling, W. Park, S.J. Park, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. Journal of the American Chemical Society, 2014, 136(15): 5647−5655. https://doi.org/10.1021/ja4108287

[97]

D.S. Ling, N. Lee, T. Hyeon. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Accounts of Chemical Research, 2015, 48(5): 1276−1285. https://doi.org/10.1021/acs.accounts.5b00038

[98]

E. Illés, M. Szekeres, I.Y. Tóth, et al. PEGylation of superparamagnetic iron oxide nanoparticles with self-organizing polyacrylate-PEG brushes for contrast enhancement in MRI diagnosis. Nanomaterials, 2018, 8(10): 776. https://doi.org/10.3390/nano8100776

[99]

A. Lazaro-Carrillo, M. Filice, M.J. Guillén, et al. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Materials Science and Engineering: C, 2020, 107: 110262. https://doi.org/10.1016/j.msec.2019.110262

[100]

I. Khmara, O. Strbak, V. Zavisova, et al. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 2019, 474: 319−325. https://doi.org/10.1016/j.jmmm.2018.11.026

[101]

P. Kharey, M. Goel, Z. Husain, et al. Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Materials Chemistry and Physics, 2023, 293: 126859. https://doi.org/10.1016/j.matchemphys.2022.126859

[102]

S. Bano, S. Nazir, A. Nazir, et al. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: Surface engineering, T2 relaxometry, and photodynamic treatment potential. International Journal of Nanomedicine, 2016, 11: 3833−3848. https://doi.org/10.2147/ijn.s106553

[103]
R.S. Tade, M.P. More. Emerging application of graphene quantum dots in photodynamic/photothermal and hyperthermia therapies for cancer treatment. Nano Biomedicine and Engineering, 2024. https://doi.org/10.26599/nbe.2024.9290083
[104]

Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials & Design, 2017, 123: 174−196. https://doi.org/10.1016/j.matdes.2017.03.036

[105]

J. Beik, Z. Abed, F.S. Ghoreishi, et al. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 2016, 235: 205−221. https://doi.org/10.1016/j.jconrel.2016.05.062

[106]

N. Mahesh, N. Singh, P. Talukdar. Investigation of a breast cancer magnetic hyperthermia through mathematical modeling of intratumoral nanoparticle distribution and temperature elevations. Thermal Science and Engineering Progress, 2023, 40: 101756. https://doi.org/10.1016/j.tsep.2023.101756

[107]
Szwed, M., Marczak, A. Application of nanoparticles for magnetic hyperthermia for cancer treatment—The current state of knowledge. Cancers, 2024, 16(6): 1156. https://doi.org/10.3390/cancers16061156
[108]

M. Creixell, A.C. Bohórquez, M. Torres-Lugo, et al. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano, 2011, 5(9): 7124−7129. https://doi.org/10.1021/nn201822b

[109]

E. Obrador, A. Jihad-Jebbar, R. Salvador-Palmer, et al. Externally applied electromagnetic fields and hyperthermia irreversibly damage cancer cells. Cancers, 2023, 15(13): 3413. https://doi.org/10.3390/cancers15133413

[110]

S. Ebrahimisadr, B. Aslibeiki, R. Asadi. Magnetic hyperthermia properties of iron oxide nanoparticles: The effect of concentration. Physica C: Superconductivity and Its Applications, 2018, 549: 119−121. https://doi.org/10.1016/j.physc.2018.02.014

[111]

A. Urtizberea, E. Natividad, A. Arizaga, et al. Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. The Journal of Physical Chemistry C, 2010, 114(11): 4916−4922. https://doi.org/10.1021/jp912076f

[112]
I. Hilger. In vivo applications of magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 2013, 29(8): 828–834. https://doi.org/10.3109/02656736.2013.832815
[113]

R.J. Wydra, P.G. Rychahou, B.M. Evers, et al. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity. Acta Biomaterialia, 2015, 25: 284−290. https://doi.org/10.1016/j.actbio.2015.06.037

[114]

Priya, Naveen, K. Kaur, et al. Green synthesis: An eco-friendly route for the synthesis of iron oxide nanoparticles. Frontiers in Nanotechnology, 2021, 3: 655062. https://doi.org/10.3389/fnano.2021.655062

[115]

M.F. Horst, D.F. Coral, M.B. Fernández van Raap, et al. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Materials Science and Engineering: C, 2017, 74: 443−450. https://doi.org/10.1016/j.msec.2016.12.035

[116]

A. Alkhayal, A. Fathima, A.H. Alhasan, et al. PEG coated Fe3O4/RGO nano-cube-like structures for cancer therapy via magnetic hyperthermia. Nanomaterials, 2021, 11(9): 2398. https://doi.org/10.3390/nano11092398

[117]
N.A. Gharibkandi, M. Żuk, F.Z.B. Muftuler, et al. 198Au-coated superparamagnetic iron oxide nanoparticles for dual magnetic hyperthermia and radionuclide therapy of hepatocellular carcinoma. International Journal of Molecular Sciences, 2023, 24(6): 5282. https://doi.org/10.3390/ijms24065282
[118]

M. Vassallo, D. Martella, G. Barrera, et al. Improvement of hyperthermia properties of iron oxide nanoparticles by surface coating. ACS Omega, 2023, 8(2): 2143−2154. https://doi.org/10.1021/acsomega.2c06244

[119]

A. Rajan, M. Sharma, N.K. Sahu. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia. Scientific Reports, 2020, 10: 15045. https://doi.org/10.1038/s41598-020-71703-6

[120]

V.A.J. Silva, P.L. Andrade, A. Bustamante, et al. Magnetic and Mössbauer studies of fucan-coated magnetite nanoparticles for application on antitumoral activity. Hyperfine Interactions, 2014, 224(1): 227−238. https://doi.org/10.1007/s10751-013-0875-9

[121]

B. Jang, M.S. Moorthy, P. Manivasagan, et al. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget, 2018, 9(16): 12649−12661. https://doi.org/10.18632/oncotarget.23898

Nano Biomedicine and Engineering
Pages 74-90
Cite this article:
Abdelmonem M, Soomro R, Saad N, et al. Plant-derived Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia and Magnetic Resonance Imaging Applications. Nano Biomedicine and Engineering, 2025, 17(1): 74-90. https://doi.org/10.26599/NBE.2024.9290097
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return