AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The Application of Selenium Nanoparticles in Immunotherapy

Yu YangYing LiuQingxia YangTing Liu( )
The Department of Chemistry, Jinan University, Guangzhou 510632, China
Show Author Information

Graphical Abstract

Abstract

Selenium (Se), is an essential trace element that primarily functions in the form of selenoproteins. These selenoproteins play crucial roles in the functioning of the human organism, including anti-inflammatory processes, regulating redox balance, participating in the metabolism of thyroid hormones, and maintaining the proper functioning of the immune system. The synthesis of selenoproteins is a complex process that relies on adequate selenium intake and involves multiple specific factors. A deficiency in selenium can lead to a variety of health issues, such as Keshan disease (cardiomyopathy) and Kashin–Beck disease (osteochondropathy), liver diseases, and cancer. Nanoscale selenium particles exhibit superior conversion and utilization compared to conventional inorganic and organic forms. Surface modifications of Se nanoparticles enable them to perform diverse physiological functions. Thus, the modification of selenium-containing nanomaterials, particularly their surface properties, is crucial for understanding Se’s biological roles in antitumor activity, immunotherapy, and inflammatory responses. We summarize the preparation methods and chemical properties of various active selenium nanoparticles (SeNPs), discuss the rational design and biomedical applications of modified selenium nanomaterials in immunotherapy, and propose a network approach for their design and biological effects.

References

[1]

F. Zhang, X.L. Li, Y. Wei. Selenium and selenoproteins in health. Biomolecules, 2023, 13(5): 799. https://doi.org/10.3390/biom13050799

[2]
G. Barchielli, A. Capperucci, D. Tanini. The role of selenium in pathologies: An updated review. Antioxidants (Basel, Switzerland), 2022, 11(2): 251. https://doi.org/10.3390/antiox11020251
[3]

G. Genchi, G. Lauria, A. Catalano, et al. Biological activity of selenium and its impact on human health. International Journal of Molecular Sciences, 2023, 24(3): 2633. https://doi.org/10.3390/ijms24032633

[4]

H.H. Al-Shreefy, E. Al-Wasiti, M.J. Al-Awady. Investigation of encapsulated selenium nanoparticles with PLGA polymers against MCF-7 and HBL cell lines. Nano Biomedicine and Engineering, 2023, 15(2): 105−117. https://doi.org/10.26599/NBE.2023.9290013

[5]
L. Mao, L. Wang, M.Y. Zhang, et al. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing. Advanced Healthcare Materials, 2021, 10(14): 2100402. https://doi.org/10.1002/adhm.202100402
[6]

H.F. Bradford, T.C.R. McDonnell, A. Stewart, et al. Thioredoxin is a metabolic rheostat controlling regulatory B cells. Nature Immunology, 2024, 25(5): 873−885. https://doi.org/10.1038/s41590-024-01798-w

[7]

J.-A. Choi, E.H. Lee, H. Kim, et al. Anti-cancer effects of high-dose selenium via lipid peroxidation in ovarian cancer. Journal of Clinical Oncology, 2002, 40(16_suppl): e17547. https://doi.org/10.1200/JCO.2022.40.16_suppl.e17547

[8]

Q. Ou, X. Qiao, Z. Li, et al. Apoptosis releases hydrogen sulfide to inhibit Th17 cell differentiation. Cell Metabolism, 2024, 36(1): 78−89.e5. https://doi.org/10.1016/j.cmet.2023.11.012

[9]

S. Usui, S. Takashima, C. Goten, et al. Hepatokine selenoprotein P has an important role in cardiac remodeling. European Heart Journal, 2023, 44(Supplement_2): ehad655.3152. https://doi.org/10.1093/eurheartj/ehad655.3152

[10]

S. Ahola, P. Rivera Mejías, S. Hermans, et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metabolism, 2022, 34(11): 1875−1891.e7. https://doi.org/10.1016/j.cmet.2022.08.017

[11]

D.M. Cheff, Q. Cheng, H. Guo, et al. Development of an assay pipeline for the discovery of novel small molecule inhibitors of human glutathione peroxidases GPX1 and GPX4. Redox Biology, 2023, 63: 102719. https://doi.org/10.1016/j.redox.2023.102719

[12]

D.R. Luan, W.F. Guo, X.N. Gao, et al. Visualization of the process: Selenocysteine activates GPX4 in ferroptosis based on a nano-fluorescent probe. Science China Chemistry, 2022, 65(7): 1286−1290. https://doi.org/10.1007/s11426-022-1250-5

[13]

W.Y. Shi, S.B. Sun, H.W. et al. Guiding bar motif of thioredoxin reductase 1 modulates enzymatic activity and inhibitor binding by communicating with the co-factor FAD and regulating the flexible C-terminal redox motif. Redox Biology, 2024, 70: 103050. https://doi.org/10.1016/j.redox.2024.103050

[14]

J. Johansen-Leete, R.J. Payne. Selenium is the chalcogen of choice for selective reporting of thioredoxin reductase activity. Chem, 2022, 8(5): 1175−1177. https://doi.org/10.1016/j.chempr.2022.04.023

[15]

B. Sarzo, V. Ballesteros, C. Iñiguez, et al. Maternal Perfluoroalkyl substances, thyroid hormones, and DIO genes: A Spanish cross-sectional study. Environmental Science & Technology, 2021, 55(16): 11144−11154. https://doi.org/10.1021/acs.est.1c01452

[16]
M. Wei, Y. Sun, S. Li, et al. Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling. Protein & Cell, 14(8): 603–617. https://doi.org/10.1093/procel/pwad007
[17]

S. Germani, A.T. Van Ho, A. Cherubini, et al. SEPN1-related myopathy depends on the oxidoreductase ERO1A and is druggable with the chemical chaperone TUDCA. Cell Reports Medicine, 2024, 5(3): 101439. https://doi.org/10.1016/j.xcrm.2024.101439

[18]

Y. Noda, S. Okada, T. Suzuki. Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis. Nature Communications, 2022, 13(1): 2503. https://doi.org/10.1038/s41467-022-30181-2

[19]

D.D. Liu, W.L. Ding, , J.T. Cheng, et al. Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids. Nature Communications, 2024, 15: 5221. https://doi.org/10.1038/s41467-024-49517-1

[20]

J.H. Lee, J.K. Jang, K.Y. Ko, et al. Degradation of selenoprotein S and selenoprotein K through PPARγ-mediated ubiquitination is required for adipocyte differentiation. Cell Death & Differentiation, 2019, 26(6): 1007−1023. https://doi.org/10.1038/s41418-018-0180-x

[21]

Y.J. Yao, T. Xu, X.J. Li, et al. Selenoprotein S maintains intestinal homeostasis in ulcerative colitis by inhibiting necroptosis of colonic epithelial cells through modulation of macrophage polarization. Theranostics, 2024, 14(15): 5903−5925. https://doi.org/10.7150/thno.97005

[22]

L. Schomburg. Selenoprotein P–Selenium transport protein, enzyme and biomarker of selenium status. Free Radical Biology and Medicine, 2022, 191: 150−163. https://doi.org/10.1016/j.freeradbiomed.2022.08.022

[23]

X.-M. Xu, B.A. Carlson, R. Irons, et al. Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochemical Journal, 2007, 404(1): 115−120. https://doi.org/10.1042/BJ20070165

[24]

O. Leiter, Z. Zhuo, R. Rust, et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metabolism, 2022, 34(3): 408−423.e8. https://doi.org/10.1016/j.cmet.2022.01.005

[25]

J. Hackler, K. Demircan, T.S. Chillon, et al. High throughput drug screening identifies resveratrol as suppressor of hepatic SELENOP expression. Redox Biology, 2023, 59: 102592. https://doi.org/10.1016/j.redox.2022.102592

[26]

X. Zhang, G.C. Li, J.Q. Yin, et al. Reprogramming tumor-associated macrophages with a Se-based core–satellite nanoassembly to enhance cancer immunotherapy. Nano Letters, 2024, 24(29): 9104−9114. https://doi.org/10.1021/acs.nanolett.4c02657

[27]

J.L. Jiang, X.Y. Cui, Y.X. Huang, et al. Advances and prospects in integrated nano-oncology. Nano Biomedicine and Engineering, 2024, 16(2): 152−187. https://doi.org/10.26599/nbe.2024.9290060

[28]
Y.W. Li, Y.X. Duan, Y.Y. Li, et al. Cascade loop of ferroptosis induction and immunotherapy based on metal-phenolic networks for combined therapy of colorectal cancer. Exploration, 2024: 20230117. https://doi.org/10.1002/EXP.20230117
[29]

Z.H. Zhang, Y.X. Du, T. Liu, et al. Systematic acute and subchronic toxicity evaluation of polysaccharide–protein complex-functionalized selenium nanoparticles with anticancer potency. Biomaterials Science, 2019, 7(12): 5112−5123. https://doi.org/10.1039/c9bm01104h

[30]

Y.H. Shen, X.F. Wang, A.J. Xie, et al. Synthesis of dextran/Se nanocomposites for nanomedicine application. Materials Chemistry and Physics, 2008, 109(2-3): 534−540. https://doi.org/10.1016/j.matchemphys.2008.01.016

[31]

S.W. Liu, N.J. Li, H.Q. Lai, et al. Selenium nanoparticles enhance NK cell-mediated tumoricidal activity in malignant pleural effusion via the TrxR1-IL-18RAP-pSTAT3 Pathway. Advanced Functional Materials, 2024, 34(30): 2401264. https://doi.org/10.1002/adfm.202401264

[32]

T.Q. Nie, H.L. Wu, K.H. Wong, et al. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. Journal of Materials Chemistry B, 2016, 4(13): 2351−2358. https://doi.org/10.1039/c5tb02710a

[33]

Z.S. Xiong, H. Lin, H. Li, et al. Chiral selenium nanotherapeutics regulates selenoproteins to attenuate glucocorticoid-induced osteoporosis. Advanced Functional Materials, 2023, 33(17): 2212970. https://doi.org/10.1002/adfm.202212970

[34]

Y.Y. Huang, Y.T. Fu, M.T. Li, et al. Frontispiz: Chirality-driven transportation and oxidation prevention by chiral selenium nanoparticles. Angewandte Chemie, 2020, 132(11): 4217−4618. https://doi.org/10.1002/ange.202081162

[35]

S.Y. Zheng, X.L. Li, Y.B. Zhang, et al. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. International Journal of Nanomedicine, 2012, 2012: 3939−3949. https://doi.org/10.2147/ijn.s30940

[36]

M.H. Yazdi, S.M. Hassanzade, R. Ajideh, et al. Green synthesis of selenium nanoparticles in the presence of mycobacterium bovis cell lysate: A novel fabrication approach and its immune-modulatory effects. Nano Biomedicine and Engineering, 2022, 14(4): 308−316. https://doi.org/10.5101/nbe.v14i4.p308-316

[37]

A.V. Tugarova, A.A. Kamnev. Proteins in microbial synthesis of selenium nanoparticles. Talanta, 2017, 174: 539−547. https://doi.org/10.1016/j.talanta.2017.06.013

[38]

P.J. Fesharaki, P. Nazari, M. Shakibaie, et al. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Publication of the Brazilian Society for Microbiology, 2010, 41(2): 461−466. https://doi.org/10.1590/S1517-83822010000200028

[39]

D. Xu, L.C. Yang, Y. Wang, et al. Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44. Scientific Reports, 2018, 8(1): 4766. https://doi.org/10.1038/s41598-018-23295-5

[40]

X.L. Nie, Z.Z. Zhu, H.L. Lu, et al. Assembly of selenium nanoparticles by protein coronas composed of yeast protease A. Process Biochemistry, 2023, 129: 140−149. https://doi.org/10.1016/j.procbio.2023.03.025

[41]

T. Li, K.D. Zhu, L.S. Wang, et al. Stabilization by Chaperone GroEL in biogenic selenium nanoparticles produced from Bifidobacterium animalis H15 for the treatment of DSS-Induced colitis. ACS Applied Materials & Interfaces, 2024, 16(11): 13439−13452. https://doi.org/10.1021/acsami.3c16340

[42]

M.Z. Xu, Y.M. Qi, G.S. Liu, et al. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano, 2023, 17(21): 20825−20849. https://doi.org/10.1021/acsnano.3c05853

[43]
W.T. Jiang, Y.T. Fu, F. Yang, et al. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS Applied Materials & Interfaces, 2014, 6(16): 13738–13748. https://doi.org/10.1021/am5031962
[44]

J.-K. Yan, W.-Y. Qiu, Y.-Y. Wang, et al. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydrate polymers, 2018, 179: 19−27. https://doi.org/10.1016/j.carbpol.2017.09.063

[45]

Z.Y. Yang, Y.J. Hu, P.P. Yue, et al. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydrate Polymers, 2023, 299: 120219. https://doi.org/10.1016/j.carbpol.2022.120219

[46]

C.H. Zhu, S.M. Zhang, C.W. Song, et al. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. Journal of Nanobiotechnology, 2017, 15: 29. https://doi.org/10.1186/s12951-017-0252-y

[47]

S.Y. Rao, Y.P. Lin, R. Lin, et al. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. Journal of Nanobiotechnology, 2022, 20(1): 278. https://doi.org/10.1186/s12951-022-01490-x

[48]

W.W. Chen, X.J. Li, H. Cheng, et al. Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends in Food Science & Technology, 2022, 129: 339−352. https://doi.org/10.1016/j.jpgs.2022.10.008

[49]

X.S. Liang, T. Liu, L.P. Li, et al. Translational selenium nanotherapeutics counter-acts multiple risk factors to improve surgery-induced cognitive impairment. Chemical Engineering Journal, 2022, 441: 135984. https://doi.org/10.1016/j.cej.2022.135984

[50]

Y.H. Li, T. Liu, R.L. Zheng, et al. Translational selenium nanoparticles boost GPx1 activation to reverse HAdV-14 virus-induced oxidative damage. Bioactive Materials, 2024, 38: 276−291. https://doi.org/10.1016/j.bioactmat.2024.04.034

[51]

B.H. Zou, Z.S. Xiong, Y.Z. Yu, et al. Rapid selenoprotein activation by selenium nanoparticles to suppresses osteoclastogenesis and pathological bone loss. Advanced Materials, 2024, 36(27): 2401620. https://doi.org/10.1002/adma.202401620

[52]

F.G. Liu, H. Liu, R.H. Liu, et al. Delivery of sesamol using polyethylene-glycol-functionalized selenium nanoparticles in human liver cells in culture. Journal of Agricultural and Food Chemistry, 2019, 67(10): 2991−2998. https://doi.org/10.1021/acs.jafc.8b06924

[53]
B. Yu, T. Liu, Y. Du, Z. Luo, W. Zheng, T. Chen, X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy, Colloids and Surfaces B: Biointerfaces 139 (2016) 180-189. https://doi.org/10.1016/j.colsurfb.2015.11.063
[54]
S.H. Jalalian, M. Ramezani, K. Abnous, et al. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Letters, 2018, 416: 87–93. https://doi.org/10.1016/j.canlet.2017.12.023
[55]

Y.X. Feng, J.Y. Su, Z.N Zhao, et al. Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles. Dalton Transactions, 2014, 43(4): 1854−1861. https://doi.org/10.1039/C3DT52468J

[56]

X.-N. Li, L. Lin, X.-W. Li, et al. BSA-stabilized selenium nanoparticles ameliorate intracerebral hemorrhage's-like pathology by inhibiting ferroptosis-mediated neurotoxicology via Nrf2/GPX4 axis activation. Redox Biology, 2024, 75: 103268. https://doi.org/10.1016/j.redox.2024.103268

[57]

Y.B. Zhang, X.L. Li, Z. Huang, et al. Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9(1): 74−84. https://doi.org/10.1016/j.nano.2012.04.002

[58]

T. Lammers. Nanomedicine tumor targeting. Advanced Materials, 2024, 36(26): 2312169. https://doi.org/10.1002/adma.202312169

[59]
Y.X. Cheng, Z. Qu, Q. Jiang, et al. Functional materials for subcellular targeting strategies in cancer therapy: Progress and prospects. Advanced Materials, 2023: 2305095. https://doi.org/10.1002/adma.202305095
[60]

Z.J. Chen, R.K. Kankala, L.L. Long, et al. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Coordination Chemistry Reviews, 2023, 481: 215051. https://doi.org/10.1016/j.ccr.2023.215051

[61]
Y.Y. Huang, L.Z. He, W. Liu, et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials, 2013, 34(29): 7106-7116. https://doi.org/10.1016/j.biomaterials.2013.04.067
[62]

W. Luo, Y. Li, J. Zhao, et al. CD44-targeting hyaluronic acid-selenium nanoparticles boost functional recovery following spinal cord injury. Journal of Nanobiotechnology, 2024, 22: 37. https://doi.org/10.1186/s12951-024-02302-0

[63]

J. Huang, W. Huang, Z.H. Zhang, et al. Highly uniform synthesis of selenium nanoparticles with EGFR targeting and tumor microenvironment-responsive ability for simultaneous diagnosis and therapy of nasopharyngeal carcinoma. ACS applied materials & interfaces, 2019, 11(12): 11177−11193. https://doi.org/10.1021/acsami.8b22678

[64]

T. Liu, L.L. Zeng, W.T. Jiang, et al. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(4): 947−958. https://doi.org/10.1016/j.nano.2015.01.009

[65]

J. Shilts, Y. Severin, F. Galaway, et al. A physical wiring diagram for the human immune system. Nature, 2022, 608: 397−404. https://doi.org/10.1038/s41586-022-05028-x

[66]

G. Morris, M. Gevezova, V. Sarafian, et al. Redox regulation of the immune response. Cellular & Molecular Immunology, 2022, 19(10): 1079−1101. https://doi.org/10.1038/s41423-022-00902-0

[67]

S.L. DeAngelo, B. Győrffy, M. Koutmos, et al. Selenoproteins and tRNA-Sec: regulators of cancer redox homeostasis. Trends in Cancer, 2023, 9(12): 1006−1018. https://doi.org/10.1016/j.trecan.2023.08.003

[68]

Q. Xue, H.Q. Lai, H.M. Zhang, et al. Selenium attenuates radiation colitis by regulating cGAS-STING signaling. Advanced Science, 2024, 2403918. https://doi.org/10.1002/advs.202403918

[69]

X.D. Zhu, S.L. Li. Nanomaterials in tumor immunotherapy: New strategies and challenges. Molecular Cancer, 2023, 22(1): 94. https://doi.org/10.1186/s12943-023-01797-9

[70]

T. Liu, L.G. Xu, L.Z. He, et al. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy. Nano Today, 2020, 35: 100975. https://doi.org/10.1016/j.nantod.2020.100975

[71]

Y.X. Du, Z.H. Zhang, Y. Yang, et al. Highly active selenium nanotherapeutics combined with metformin to achieve synergistic sensitizing effect on NK cells for osteosarcoma therapy. Nanophotonics, 2022, 11(22): 5101−5111. https://doi.org/10.1515/nanoph-2022-0289

[72]

S.Q. Gao, T.Y. Li, Y. Guo, et al. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Advanced Materials, 2020, 32(12): 1907568. https://doi.org/10.1002/adma.201907568

[73]

C.X. Sun, Y.Z. Tan, H.P. Xu. From selenite to diselenide-containing drug delivery systems. ACS Materials Letters, 2020, 2(9): 1173−1177. https://doi.org/10.1021/acsmaterialslett.0c00272

[74]
H. Liu, J. Shen, W. Liu, D. Liu, L. Cheng, B. Huang, Selenium nanoparticles enhance the anti-tumor immune responses of anti-4-1BB antibody and alleviate the adverse effects on mice. Immunobiology, 2024, 152839. https://doi.org/10.1016/j.imbio.2024.152839
[75]

J.C. Aguilar, E.G. Rodríguez. Vaccine adjuvants revisited. Vaccine, 2007, 25(19): 3752−3762. https://doi.org/10.1016/j.vaccine.2007.01.111

[76]

E. Montomoli, S. Piccirella, B. Khadang, et al. Current adjuvants and new perspectives in vaccine formulation. Expert Review of Vaccines, 2011, 10(7): 1053−1061. https://doi.org/10.1586/erv.11.48

[77]

B.Q. Zhou, J.X. Liu, M.A. Lin, et al. Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coordination Chemistry Reviews, 2021, 442: 214009. https://doi.org/10.1016/j.ccr.2021.214009

[78]

T. Uto, T. Akagi, K. Yoshinaga, et al. The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterialsm, 2011, 32(22): 5206−5212. https://doi.org/10.1016/j.biomaterials.2011.03.052

[79]

D.M. Smith, J.K. Simon, J.R. Baker Jr. Applications of nanotechnology for immunology. Nature Reviews Immunology, 2013, 13(8): 592−605. https://doi.org/10.1038/nri3488

[80]

X.R. Li, A.M. Aldayel, Z.R. Cui. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. Journal of Controlled Release, 2014, 173: 148−157. https://doi.org/10.1016/j.jconrel.2013.10.032

[81]

B.B. Sun, Z.X. Ji, Y.-P. Liao, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano, 2013, 7(12): 10834−10849. https://doi.org/10.1021/nn404211j

[82]
K. Niikura, T. Matsunaga, T. Suzuki, et al. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5): 3926–3938. https://doi.org/10.1021/nn3057005
[83]
Y.Y. Xu, H. Tang, J.-h. Liu, et al. Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicology Letters, 2013, 219(1): 42–48. https://doi.org/10.1016/j.toxlet.2013.02.010
[84]

E.C. Carroll, L. Jin, A. Mori, et al. Lavelle the vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 2016, 44(3): 597−608. https://doi.org/10.1016/j.immuni.2016.02.004

[85]

L. Torrieri-Dramard, B. Lambrecht, H.L. Ferreira, et al. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Molecular Therapy, 2011, 19(3): 602−611. https://doi.org/10.1038/mt.2010.222

[86]

E. Domínguez-Álvarez, B. Rácz, M.A. Marć, et al. Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resistance Updates, 2022, 63: 100844. https://doi.org/10.1016/j.drup.2022.100844

[87]

Y. Luo, Z. Ren, R.N. Bo, et al. Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus. International Journal of Biological Macromolecules, 2020, 143: 393−400. https://doi.org/10.1016/j.ijbiomac.2019.12.061

[88]

B. Deng, X.M. He, D.D. Wang, et al. Designing selenium nanoadjuvant as universal agent for live-killed virus-based vaccine. Small Methods, 2023, 7(11): 2300293. https://doi.org/10.1002/smtd.202300293

[89]

M.H. Yazdi, B. Varastehmoradi, E. Faghfuri, et al. Adjuvant effect of biogenic selenium nanoparticles improves the immune responses and survival of mice receiving 4T1 cell antigens as vaccine in breast cancer murine model. Journal of Nanoscience and Nanotechnology, 2015, 15(12): 10165−10172. https://doi.org/10.1166/jnn.2015.11692

[90]

H.Q. Lai, L.G. Xu, C. Liu, et al. Universal selenium nanoadjuvant with immunopotentiating and redox-shaping activities inducing high-quality immunity for SARS-CoV-2 vaccine. Signal Transduction and Targeted Therapy, 2023, 8(1): 88. https://doi.org/10.1038/s41392-023-01371-1

[91]
Visan, I. Stress-induced inflammation. Nature Immunology, 2023, 24(7): 1051. https://doi.org/10.1038/s41590-023-01555-5
[92]

M.N. Wang, S.Y. Chen, X.M. He, et al. Targeting inflammation as cancer therapy. Journal of Hematology & Oncology, 2024, 17: 13. https://doi.org/10.1186/s13045-024-01528-7

[93]
R.C. Coll, K. Schroder. Inflammasome components as new therapeutic targets in inflammatory disease. Nature Reviews Immunology, 2024. https://doi.org/10.1038/s41577-024-01075-9
[94]

S. Marchi, E. Guilbaud, S.W.G. Tait, et al. Mitochondrial control of inflammation. Nature Reviews Immunology, 2023, 23(3): 159−173. https://doi.org/10.1038/s41577-022-00760-x

[95]
Carl, N. Nonresolving inflammation redux. Immunity, 2022, 55(4): 592–605. https://doi.org/10.1016/j.immuni.2022.03.016
[96]

J. Ouyang, B. Deng, B.H. Zou, et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota. Journal of the American Chemical Society, 2023, 145(22): 12193−12205. https://doi.org/10.1021/jacs.3c02179

[97]

B. Xie, D.L. Zeng, M.J. Yang, et al. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano, 2023, 17(14): 14053−14068. https://doi.org/10.1021/acsnano.3c04344

[98]

H. Yang, C.H. Zhu, W.L. Yuan, et al. Mannose-rich Oligosaccharides-functionalized selenium nanoparticles mediates Macrophage reprogramming and inflammation resolution in ulcerative colitis. Chemical Engineering Journal, 2022, 435: 131715. https://doi.org/10.1016/j.cej.2021.131715

Nano Biomedicine and Engineering
Pages 345-356
Cite this article:
Yang Y, Liu Y, Yang Q, et al. The Application of Selenium Nanoparticles in Immunotherapy. Nano Biomedicine and Engineering, 2024, 16(3): 345-356. https://doi.org/10.26599/NBE.2024.9290100

519

Views

134

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 26 August 2024
Revised: 03 October 2024
Accepted: 10 October 2024
Published: 30 October 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return